No Arabic abstract
Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possibly explaining asymmetries and dust concentrations recently observed at sub-millimeter and millimeter wavelengths. We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at sub-millimeter and millimeter wavelengths. Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and ngVLA observations. We find that a giant vortex not only captures dust grains with Stokes number St < 1 but can also affect the distribution of larger grains (with St ~ 1) carving a gap associated to a ring composed of incompletely trapped particles. The results are presented for different particle size and associated to their possible signatures in disk observations. Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves, without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.
Recent surveys of protoplanetary disks show that substructure in dust thermal continuum emission maps is common in protoplanetary disks. These substructures, most prominently rings and gaps, shape and change the chemical and physical conditions of the disk, along with the dust size distributions. In this work, we use a thermochemical code to focus on the chemical evolution that is occurring within the gas-depleted gap and the dust-rich ring often observed behind it. The composition of these spatial locations are of great import, as the gas and ice-coated grains will end up being part of the atmospheres of gas giants and/or the seeds of rocky planets. Our models show that the dust temperature at the midplane of the gap increases, enough to produce local sublimation of key volatiles and pushing the molecular layer closer to the midplane, while it decreases in the dust-rich ring, causing a higher volatile deposition onto the dust grain surfaces. Further, the ring itself presents a freeze-out trap for volatiles in local flows powered by forming planets, becoming a site of localized volatile enhancement. Within the gas depleted gap, the line emission depends on several different parameters, such as: the depth of the gap in surface density, the location of the dust substructure, and the abundance of common gas tracers, such as CO. In order to break this uncertainty between abundance and surface density, other methods such as disk kinematics, become necessary to constrain the disk structure and its chemical evolution.
We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array (ALMA). In each case the emission ring is found to arise at the edge of the observable disk of mm-sized grains (pebbles) traced by (sub)mm-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e. not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.
In this work, we study how the dust coagulation/fragmentation will influence the evolution and observational appearances of vortices induced by a massive planet embedded in a low viscosity disk by performing global 2D high-resolution hydrodynamical simulations. Within the vortex, due to its higher gas surface density and steeper pressure gradients, dust coagulation, fragmentation and drift (to the vortex center) are all quite efficient, producing dust particles ranging from micron to $sim 1.0 {rm cm}$, as well as overall high dust-to-gas ratio (above unity). In addition, the dust size distribution is quite non-uniform inside the vortex, with the mass weighted average dust size at the vortex center ($sim 4.0$ mm) being a factor of $sim10$ larger than other vortex regions. Both large ($sim$ mm) and small (tens of micron) particles contribute strongly to affect the gas motion within the vortex. As such, we find that the inclusion of dust coagulation has a significant impact on the vortex lifetime and the typical vortex lifetime is about 1000 orbits. After the initial gaseous vortex is destroyed, the dust spreads into a ring with a few remaining smaller gaseous vortices with a high dust concentration and a large maximum size ($sim$ mm). At late time, the synthetic dust continuum images for the coagulation case show as a ring inlaid with several hot spots at 1.33 mm band, while only distinct hot spots remain at 7.0 mm.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
Resolved ALMA and VLA observations indicate the existence of two dust traps in the protoplanetary disc MWC 758. By means of 2D gas+dust hydrodynamical simulations post-processed with 3D dust radiative transfer calculations, we show that the spirals in scattered light, the eccentric, asymmetric ring and the crescent-shaped structure in the (sub)millimetre can all be caused by two giant planets: a 1.5-Jupiter mass planet at 35 au (inside the spirals) and a 5-Jupiter mass planet at 140 au (outside the spirals). The outer planet forms a dust-trapping vortex at the inner edge of its gap (at ~85 au), and the continuum emission of this dust trap reproduces the ALMA and VLA observations well. The outer planet triggers several spiral arms which are similar to those observed in polarised scattered light. The inner planet also forms a vortex at the outer edge of its gap (at ~50 au), but it decays faster than the vortex induced by the outer planet, as a result of the discs turbulent viscosity. The vortex decay can explain the eccentric inner ring seen with ALMA as well as the low signal and larger azimuthal spread of this dust trap in VLA observations. Finding the thermal and kinematic signatures of both giant planets could verify the proposed scenario.