Do you want to publish a course? Click here

Analytical results for a parity-time symmetric two-level system under synchronous combined modulations

54   0   0.0 ( 0 )
 Added by Xiaobing Luo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a simple method of combined synchronous modulations to generate the analytically exact solutions for a parity-time symmetric two-level system. Such exact solutions are expressible in terms of simple elementary functions and helpful for illuminating some generalizations of appealing concepts originating in the Hermitian system. Some intriguing physical phenomena, such as stabilization of a non-Hermitian system by periodic driving, non-Hermitian analogs of coherent destruction of tunneling (CDT) and complete population inversion (CPI), are demonstrated analytically and confirmed numerically. In addition, by using these exact solutions we derive a pulse area theorem for such non-Hermitian CPI in the parity-time symmetric two-level system. Our results may provide an additional possibility for pulse manipulation and coherent control of the parity-time symmetric two-level system.



rate research

Read More

Non-Hermitian systems with parity-time ($mathcal{PT}$) symmetry give rise to exceptional points (EPs) with exceptional properties that arise due to the coalescence of eigenvectors. Such systems have been extensively explored in the classical domain, where second or higher order EPs have been proposed or realized. In contrast, quantum information studies of $mathcal{PT}$-symmetric systems have been confined to systems with a two-dimensional Hilbert space. Here by using a single-photon interferometry setup, we simulate quantum dynamics of a four-dimensional $mathcal{PT}$-symmetric system across a fourth-order exceptional point. By tracking the coherent, non-unitary evolution of the density matrix of the system in $mathcal{PT}$-symmetry unbroken and broken regions, we observe the entropy dynamics for both the entire system, and the gain and loss subsystems. Our setup is scalable to the higher-dimensional $mathcal{PT}$-symmetric systems, and our results point towards the rich dynamics and critical properties.
Classical open systems with balanced gain and loss, i.e. parity-time ($mathcal{PT}$) symmetric systems, have attracted tremendous attention over the past decade. Their exotic properties arise from exceptional point (EP) degeneracies of non-Hermitian Hamiltonians that govern their dynamics. In recent years, increasingly sophisticated models of $mathcal{PT}$-symmetric systems with time-periodic (Floquet) driving, time-periodic gain and loss, and time-delayed coupling have been investigated, and such systems have been realized across numerous platforms comprising optics, acoustics, mechanical oscillators, optomechanics, and electrical circuits. Here, we introduce a $mathcal{PT}$-symmetric (balanced gain and loss) system with memory, and investigate its dynamics analytically and numerically. Our model consists of two coupled $LC$ oscillators with positive and negative resistance, respectively. We introduce memory by replacing either the resistor with a memristor, or the coupling inductor with a meminductor, and investigate the circuit energy dynamics as characterized by $mathcal{PT}$-symmetric or $mathcal{PT}$-symmetry broken phases. Due to the resulting nonlinearity, we find that energy dynamics depend on the sign and strength of initial voltages and currents, as well as the distribution of initial circuit energy across its different components. Surprisingly, at strong inputs, the system exhibits self-organized Floquet dynamics, including $mathcal{PT}$-symmetry broken phase at vanishingly small dissipation strength. Our results indicate that $mathcal{PT}$-symmetric systems with memory show a rich landscape.
In this work, we propose a PT-symmetric coupler whose arms are birefringent waveguides as a realistic physical model which leads to a so-called quadrimer i.e., a four complex field setting. We seek stationary solutions of the resulting linear and nonlinear model, identifying its linear point of PT symmetry breaking and examining the corresponding nonlinear solutions that persist up to this point, as well as, so-called, ghost states that bifurcate from them. We obtain the relevant symmetry breaking bifurcations and numerically follow the associated dynamics which give rise to growth/decay even within the PT-symmetric phase. Our obtained stationary nonlinear solutions are found to terminate in saddle-center bifurcations which are analogous to the linear PT-phase transition.
Quantum mechanics establishes a fundamental bound for the minimum evolution time between two states of a given system. Known as the quantum speed limit (QSL), it is a useful tool in the context of quantum control, where the speed of some control protocol is usually intended to be as large as possible. While QSL expressions for time-independent hamiltonians have been well studied, the time-dependent regime has remained somewhat unexplored, albeit being usually the relevant problem to be compared with when studying systems controlled by external fields. In this paper we explore the relation between optimal times found in quantum control and the QSL bound, in the (relevant) time-dependent regime, by discussing the ubiquitous two-level Landau-Zener type hamiltonian.
We experimentally study the time-optimal construction of arbitrary single-qubit rotations under a single strong driving field of finite amplitude. Using radiation-dressed states of nitrogen vacancy centers in diamond, we realize a strongly-driven two-level system and achieve driving frequencies four times larger than its Larmor frequency. We implement time optimal universal rotations on this system, characterize their performance using quantum process tomography, and demonstrate a dual-axis ac magnetometry sequence with pulses at sub-Larmor time scales. Our results pave the way for applying fast qubit control and high-density pulse schemes in the fields of quantum information processing and quantum metrology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا