Local Patch Encoding-Based Method for Single Image Super-Resolution


Abstract in English

Recent learning-based super-resolution (SR) methods often focus on dictionary learning or network training. In this paper, we discuss in detail a new SR method based on local patch encoding (LPE) instead of traditional dictionary learning. The proposed method consists of a learning stage and a reconstructing stage. In the learning stage, image patches are classified into different classes by means of the proposed LPE, and then a projection matrix is computed for each class by utilizing a simple constraint. In the reconstructing stage, an input LR patch can be simply reconstructed by computing its LPE code and then multiplying the corresponding projection matrix. Furthermore, we discuss the relationship between the proposed method and the anchored neighborhood regression methods; we also analyze the extendibility of the proposed method. The experimental results on several image sets demonstrate the effectiveness of the LPE-based methods.

Download