No Arabic abstract
High purity Zinc Selenide (ZnSe) crystals are produced starting from elemental Zn and Se to be used for the search of the neutrinoless double beta decay (0{ u}DBD) of 82Se. In order to increase the number of emitting nuclides, enriched 82Se is used. Dedicated production lines for the synthesis and conditioning of the Zn82Se powder in order to make it suitable for crystal growth were assembled compliant with radio-purity constraints specific to rare event physics experiments. Besides routine check of impurities concentration, high sensitivity measurements are made for radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for ZnSe crystals production. Indications are given on the crystals perfection and how it is achieved. Since very expensive isotopically enriched material (82Se) is used, a special attention is given for acquiring the maximum yield in the mass balance of all production stages. Production and certification protocols are presented and resulting ready-to-use Zn82Se crystals are described.
We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% $^{76}$Ge. This detector, based on the Ortec PT6x2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was developed as a possible prototype for neutrinoless double beta-decay measurements by the {sc Majorana} collaboration. We present some of the general characteristics (including bias potential, efficiency, leakage current, and integral cross-talk) for this detector in its temporary cryostat. We also present an analysis of the resolution of the detector, and demonstrate that for all but two segments there is at least one channel that reaches the {sc Majorana} resolution goal below 4 keV FWHM at 2039 keV, and all channels are below 4.5 keV FWHM.
The observation of neutrinoless double-beta decay (0${ u}{beta}{beta}$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of $sim$0.1 count /(FWHM$cdot$t$cdot$yr) in the region of the signal. The current generation $^{76}$Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0${ u}{beta}{beta}$ signal region of all 0${ u}{beta}{beta}$ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale $^{76}$Ge experiment. The collaboration aims to develop a phased 0${ u}{beta}{beta}$ experimental program with discovery potential at a half-life approaching or at $10^{28}$ years, using existing resources as appropriate to expedite physics results.
High purity TeO2 crystals are produced to be used for the search for the neutrinoless double beta decay of 130Te. Dedicated production lines for raw material synthesis, crystal growth and surface processing were built compliant with radio-purity constraints specific to rare event physics experiments. High sensitivity measurements of radio-isotope concentrations in raw materials, reactants, consumables, ancillaries and intermediary products used for TeO2 crystals production are reported. Production and certification protocols are presented and resulting ready-to-use TeO2 crystals are described.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next generation of tonnescale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First data taken with the DEMONSTRATOR are introduced here.
Neutrinoless double-beta ($0 ubetabeta$) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for $0 ubetabeta$ decay of $^{130}$Te using an array of 988 TeO$_2$ crystal bolometers operated at 10 mK. The detector will contain 206 kg of $^{130}$Te and have an average energy resolution of 5 keV; the projected $0 ubetabeta$ decay half-life sensitivity after five years of live time is $1.6times 10^{26}$ y at $1sigma$ ($9.5times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.