No Arabic abstract
Far-infrared (FIR) images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log$(L_{rm IR}/L_odot) = 11.00 - 11.99$, ULIRGs: log$(L_{rm IR}/L_odot) = 12.00 - 12.99$], in the Great Observatories All-Sky LIRG Survey (GOALS) based on observations with the $Herschel$ $Space$ $Observatory$ Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 $mu$m) and the three SPIRE bands (250, 350, and 500 $mu$m), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of $sim$$100times100$ kpc$^2$. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This dataset constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope (Evans et al. 2017, in prep.), Spitzer Space Telescope (Mazzarella et al. 2017, in prep.), and Chandra X-ray Observatory (Iwasawa et al. 2011, 2017, in prep.). Collectively these data will enable a wide range of detailed studies of AGN and starburst activity within the most luminous infrared galaxies in the local Universe.
We present IRAM-30m Telescope $^{12}$CO and $^{13}$CO observations of a sample of 55 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe. This sample is a subset of the Great Observatory All-Sky LIRG Survey (GOALS), for which we use ancillary multi-wavelength data to better understand their interstellar medium and star formation properties. Fifty-three (96%) of the galaxies are detected in $^{12}$CO, and 29 (52%) are also detected in $^{13}$CO above a 3$sigma$ level. The median full width at zero intensity (FWZI) velocity of the CO line emission is 661km s$^{-1}$, and $sim$54% of the galaxies show a multi-peak CO profile. Herschel photometric data is used to construct the far-IR spectral energy distribution of each galaxy, which are fit with a modified blackbody model that allows us to derive dust temperatures and masses, and infrared luminosities. We make the assumption that the gas-to-dust mass ratio of (U)LIRGs is comparable to local spiral galaxies with a similar stellar mass (i.e., gas/dust of mergers is comparable to their progenitors) to derive a CO-to-H$_2$ conversion factor of $langlealpharangle=1.8^{+1.3}_{-0.8}M_odot$(K km s$^{-1}$pc$^{2}$)$^{-1}$; such a value is comparable to that derived for (U)LIRGs based on dynamical mass arguments. We derive gas depletion times of $400-600$Myr for the (U)LIRGs, compared to the 1.3Gyr for local spiral galaxies. Finally, we re-examine the relationship between the $^{12}$CO/$^{13}$CO ratio and dust temperature, confirming a transition to elevated ratios in warmer systems.
We present new IRAM 30m spectroscopic observations of the $sim88$ GHz band, including emission from the CCH (n=1-0) multiplet, HCN (1-0), HCO+ (1-0), and HNC (1-0), for a sample of 58 local luminous and ultraluminous infrared galaxies from the Great Observatories All-sky LIRG Survey (GOALS). By combining our new IRAM data with literature data and Spitzer/IRS spectroscopy, we study the correspondence between these putative tracers of dense gas and the relative contribution of active galactic nuclei (AGN) and star formation to the mid-infrared luminosity of each system. We find the HCN (1-0) emission to be enhanced in AGN-dominated systems ($langle$L$_{HCN (1-0)}$/L$_{HCO^+ (1-0)}rangle=1.84$), compared to composite and starburst-dominated systems ($langle$L$_{HCN (1-0)}$/L$_{HCO^+ (1-0)}rangle=1.14$, and 0.88, respectively). However, some composite and starburst systems have L$_{HCN (1-0)}$/L$_{HCO^+ (1-0)}$ ratios comparable to those of AGN, indicating that enhanced HCN emission is not uniquely associated with energetically dominant AGN. After removing AGN-dominated systems from the sample, we find a linear relationship (within the uncertainties) between $log_{10}$(L$_{HCN (1-0)}$) and $log_{10}$(L$_{IR}$), consistent with most previous findings. L$_{HCN (1-0)}$/L$_{IR}$, typically interpreted as the dense gas depletion time, appears to have no systematic trend with L$_{IR}$ for our sample of luminous and ultraluminous infrared galaxies, and has significant scatter. The galaxy-integrated HCN (1-0) and HCO+ (1-0) emission do not appear to have a simple interpretation, in terms of the AGN dominance or the star formation rate, and are likely determined by multiple processes, including density and radiative effects.
Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the Asteroid Terrestrial-impact Last Alert System (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright ($m < 19$) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalogue of 5$times10^{6}$ sources. This, the first of a series of articles describing ATLAS, is devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient lightcurves.
We describe the infrared properties of sources detected over ~36 deg^2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5-sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of ~630 deg^{-2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z<1. For sources with spectroscopic redshifts at z<0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +-50% scatter over ~1.5 orders of magnitude in luminosity, ~10^9 - 10^{10.5} L_sun. By contrast, the matched sources without previously measured redshifts (r>~20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z>~1.5) or optically faint low-redshift galaxies with unusually low temperatures (T<~20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (~30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.
The Asteroid Terrestrial-impact Last Alert System (ATLAS) observes most of the sky every night in search of dangerous asteroids. Its data are also used to search for photometric variability, where sensitivity to variability is limited by photometric accuracy. Since each exposure spans 7.6 deg corner to corner, variations in atmospheric transparency in excess of 0.01 mag are common, and 0.01 mag photometry cannot be achieved by using a constant flat field calibration image. We therefore have assembled an all-sky reference catalog of approximately one billion stars to m~19 from a variety of sources to calibrate each exposures astrometry and photometry. Gaia DR2 is the source of astrometry for this ATLAS Refcat2. The sources of g, r, i, z photometry include Pan-STARRS DR1, the ATLAS Pathfinder photometry project, ATLAS re-flattened APASS data, SkyMapper DR1, APASS DR9, the Tycho-2 catalog, and the Yale Bright Star Catalog. We have attempted to make this catalog at least 99% complete to m<19, including the brightest stars in the sky. We believe that the systematic errors are no larger than 5 millimag RMS, although errors are as large as 20 millimag in small patches near the galactic plane.