Do you want to publish a course? Click here

A combined mean-field and three-body model tested on the $^{26}$O-nucleus

93   0   0.0 ( 0 )
 Added by Dennis Hove
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We combine few- and many-body degrees of freedom in a model applicable to both bound and continuum states and adaptable to different subfields of physics. We formulate a self-consistent three-body model for a core-nucleus surrounded by two valence nucleons. We treat the core in the mean-field approximation and use the same effective Skyrme interaction between both core and valence nucleons. We apply the model to $^{26}$O where we reproduce the known experimental data as well as phenomenological models with more parameters. The decay of the ground state is found to proceed directly into the continuum without effect of the virtual sequential decay through the well reproduced $d_{3/2}$-resonance of $^{25}$O.



rate research

Read More

On the basis of the Faddeev integral equations method and the Watson- Feshbach concept of the effective (optical) interaction potential, the first fully consistent three-body approach to the description of the penetration of a charged particle through the Coulomb field of a two-particle bound complex (composed of one charged and one neutral particles) has been developed. A general formalism has been elaborated and on its basis, to a first approximation in the Sommerfeld parameter, the influence of the nuclear structure on the probability of the penetration of a charged particle (the muon, the pion, the kaon and the proton) through the Gamow barrier of a two-fragment nucleus (the deuteron and the two lightest lambda hypernuclei, lambda hypertriton and lambda hyperhelium-5, has been calculated and studied.
We investigate the effects of chiral NNLO three-nucleon force (3NF) on nucleus-nucleus elastic scattering, using a standard prescription based on the Brueckner-Hartree-Fock method and the g-matrix folding model. The g-matrix calculated in nuclear matter from the chiral N3LO two-nucleon forces (2NF) is close to that from the Bonn-B 2NF. Because the Melbourne group have already developed a practical g-matrix interaction by localizing the nonlocal g-matrix calculated from the Bonn-B 2NF, we consider the effects of chiral 3NF, in this first attempt to study the 3NF effects, by modifying the local Melbourne g-matrix according to the difference between the g-matrices of the chiral 2NF and 2NF+3NF. For nucleus-nucleus elastic scattering, the 3NF corrections make the folding potential less attractive and more absorptive. The latter novel effect is due to the enhanced tensor correlations in triplet channels. These changes reduce the differential cross section at the middle and large angles, improving the agreement with the experimental data for 16O-16O scattering at 70 MeV/nucleon and 12C-12C scattering at 85 MeV/nucleon.
$K^-$ atomic data are used to test several models of the $K^-$ nucleus interaction. The t($rho$)$rho$ optical potential, due to coupled channel models incorporating the $Lambda$(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the $Lambda$(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit $K^-$ optical potential is found to be strongly attractive, with a depth of 180 pm 20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.
The three-body $KKbar K$ model for the $K(1460)$ resonance is developed on the basis of the Faddeev equations in configuration space. A single-channel approach is using with taking into account the difference of masses of neutral and charged kaons. It is demonstrated that a splitting the mass of the $K(1460)$ resonance takes a place around 1460 MeV according to $K^0K^0{bar K}^0$, $K^0K^+K^-$ and $K^+K^0{bar K}^0$, $ K^+K^+K^-$ neutral and charged particle configurations, respectively. The calculations are performed with two sets of $KK$ and $Kbar K$ phenomenological potentials, where the latter interaction is considered the same for the isospin singlet and triplet states. The effect of repulsion of the $KK$ interaction on the mass of the $KKbar K$ system is studied and the effect of the mass polarization is evaluated. The first time the Coulomb interaction for description of the $K(1460)$ resonance is considered. The mass splitting in the $K$(1460) resonances is evaluated to be in range of 10 MeV with taking into account the Coulomb force. The three-body model with the $Kbar K$ potential, which has the different strength of the isospin singlet and triplet parts that are related by the condition of obtaining a quasi-bound three-body state is also considered. Our results are in reasonable agreement with the experimental mass of the $K(1460)$ resonance.
We compare the predictions of the SuSAv2 model including two-particle two-hole meson-exchange currents with the recent JLab data for inclusive electron scattering on three different targets (C, Ar and Ti). The agreement is very good over the full energy spectrum, with some discrepancy seen only in the deep inelastic region. The 2p2h response, peaked in the dip region between the quasielastic and $Delta$-resonance peak, is essential to reproduce the data. We also analyze the $k_F$ (Fermi momentum) dependence of the data in terms of scaling of second kind, showing that the 2p2h response scales very differently from the quasielastic one, in full accord with what is predicted by the model. The results represent a valuable test of the applicability of the model to neutrino scattering processes on different nuclei.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا