No Arabic abstract
We study non-Markovian dynamics of a two level atom using pseudomode method. Because of the memory effect of non-Markovian dynamics, the atom receives back information and excited energy from the reservoir at a later time, which causes more complicated behaviors than Markovian dynamics. With pseudomode method, non-Markovian dynamics of the atom can be mapped into Markovian dynamics of the atom and pseudomode. We show that by using pseudomode method and quantum jump approach for Markovian dynamics, we get a physically intuitive insight into the memory effect of non-Markovian dynamics. It suggests a simple physical meaning of the memory time of a non-Markovian reservoir.
We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assumptions we use a combination of non-secular open- and closed-system perturbation theory, and we abstain from any additional approximation schemes. These more accurate solutions are necessary to explore several regimes: in particular, near-resonance dynamics and low-temperature behavior. In detuned atomic systems, small variations in the system energy levels engender timescales which, in general, cannot be safely ignored, as would be the case in the rotating-wave approximation (RWA). More problematic are the second-order solutions, which, as has been recently pointed out, cannot be accurately calculated using any second-order perturbative master equation, whether RWA, Born-Markov, Redfield, etc.. This latter problem, which applies to all perturbative open-system master equations, has a profound effect upon calculation of entanglement at low temperatures. We find that even at zero temperature all initial states will undergo finite-time disentanglement (sometimes termed sudden death), in contrast to previous work. We also use our solution, without invoking RWA, to characterize the necessary conditions for Dickie subradiance at finite temperature. We find that the subradiant states fall into two categories at finite temperature: one that is temperature independent and one that acquires temperature dependence. With the RWA there is no temperature dependence in any case.
We study a driven two-state system interacting with a structured environment. We introduce the non-Markovian master equation ruling the system dynamics, and we derive its analytic solution for general reservoir spectra. We compare the non-Markovian dynamics of the Bloch vector for two classes of reservoir spectra: the Ohmic and the Lorentzian reservoir. Finally, we derive the analytic conditions for complete positivity with and without the secular approximation. Interestingly, the complete positivity conditions have a transparent physical interpretation in terms of the characteristic timescales of phase diffusion and relaxation processes.
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed ancillas, which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of memory depth where these correlations are established between the system and a suitably sized memory rendering the overall system+memory evolution Markovian. We extend our analysis to show that while most system-environment correlations are irrelevant for the dynamical characterization of the process, they generally play an important role in the thermodynamic description. Finally, we show that under an energy-preserving system-environment interaction, a non-monotonic time behaviour of the heat flux serves as an indicator of non-Markovian behaviour.
A sufficient condition for non-Markovian master equation which ensures the complete positivity of the resulting time evolution is presented.
We address memory effects in the dynamics of a two-level open quantum system interacting with a classical fluctuating field via dipole interaction. In particular, we study the backflow of information for a field with a Lorentzian spectrum, and reveal the existence of two working regimes, where memory effects are governed either by the energy gap of the two-level system, or by the interaction energy. Our results shows that non-Markovianity increases with time, at variance with the results obtained for dephasing and despite the dissipative nature of the interaction, thus suggesting that the corresponding memory effects might be observed in practical scenarios.