No Arabic abstract
In the current extensive studies of transition metal dichalcogenides (TMDCs), compared to hexagonal layered materials, like graphene, hBN and MoS2, low symmetry layered 2D crystals showed great potential for applications in anisotropic devices. Rhenium diselenide (ReSe2) has the bulk space group P1 and belongs to triclinic crystal system with a deformed cadmium iodide type structure. Here we unambiguously determined monolayer and its vertical orientation of rhenium diselenide membrane with an individual electron diffraction pattern, which could be applicable to low symmetry crystal systems, including both triclinic and monoclinic lattices, as long as their third unit-cell basis vector is not perpendicular to basal plane. Atomically resolved image from probe corrected annular dark field scanning transmission electron microscope (ADF-STEM) was employed to validate layer number. Finally, experimental results were well explained by kinematical electron diffraction theory and corresponding simulations.
The scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity-odd) and magnetic (time-odd). A zero-magnetization ferromagnet Sm0.976Gd0.024Al2 with a diamond-type structure presents Dirac multipoles at basis-forbidden reflections that include the standard (2, 2, 2) reflection. Magnetic amplitudes measured at four such reflections are in full accord with a structure factor calculated from the appropriate magnetic space group.
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental many-body interactions. However, owing to its high instability, unambiguous identification of monolayer phosphorene has been elusive. Consequently, many important fundamental properties, such as exciton dynamics, remain underexplored. We report a rapid, noninvasive, and highly accurate approach based on optical interferometry to determine the layer number of phosphorene, and confirm the results with reliable photoluminescence measurements. Based on the measured optical gap and the calculated electronic energy gap, we determined the exciton binding energy to be ~0.4 eV for the monolayer phosphorene on SiO2/Si substrate, which agrees well with theoretical predictions. Our results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using monolayer phosphorene.
Recently, two-dimensional (2D) materials with strong in-plane anisotropic properties such as black phosphorus have demonstrated great potential for developing new devices that can take advantage of its reduced lattice symmetry with potential applications in electronics, optoelectronics and thermoelectrics. However, the selection of 2D material with strong in-plane anisotropy has so far been very limited and only sporadic studies have been devoted to transition metal dichalcogenides (TMDC) materials with reduced lattice symmetry, which is yet to convey the full picture of their optical and phonon properties, and the anisotropy in their interlayer interactions. Here, we study the anisotropic interlayer interactions in an important TMDC 2D material with reduced in-plane symmetry - atomically thin rhenium diselenide (ReSe2) - by investigating its ultralow frequency interlayer phonon vibration modes, the layer dependent optical bandgap, and the anisotropic photoluminescence (PL) spectra for the first time. The ultralow frequency interlayer Raman spectra combined with the first study of polarization-resolved high frequency Raman spectra in mono- and bi-layer ReSe2 allows deterministic identification of its layer number and crystal orientation. PL measurements show anisotropic optical emission intensity with bandgap increasing from 1.26 eV in the bulk to 1.32 eV in monolayer, consistent with the theoretical results based on first-principle calculations. The study of the layer-number dependence of the Raman modes and the PL spectra reveals the relatively weak van der Waals interaction and 2D quantum confinement in atomically-thin ReSe2.
The increasing scientific and technological interest in nanoparticles has raised the need for fast, efficient and precise characterization techniques. Powder diffraction is a very efficient experimental method, as it is straightforward and non-destructive. However, its use for extracting information regarding very small particles brings some common crystallographic approximations to and beyond their limits of validity. Powder pattern diffraction calculation methods are critically discussed, with special focus on spherical particles with log-normal distribution, with the target of determining size distribution parameters. A 20-nm CeO$_{2}$ sample is analyzed as example.
A recent polarized neutron diffraction experiment on the 5d2 rhenium double perovskite Ba2YReO6 held at a low temperature uncovered weak magnetic diffraction peaks. Data analysis inferred a significantly reduced Re dipole moment, and long-range order compatible with an antiferromagnet, non-collinear motif. To interpret the experimental findings, we present a model wavefunction for Re ions derived from the crystal field potential, Coulomb interaction, and spin-orbit coupling that fully respects the symmetry of the low-temperature ordered state. It is used to calculate in analytic form all multipole moments visible in neutron and resonance enhanced x-ray diffraction. A minimal model consistent with available neutron diffraction data predicts significant multipolar moments up to the hexadecapole, and, in particular, a dominant charge-like quadrupole moment. Calculated diffraction patterns embrace single crystal x-ray diffraction at the Re L-edge, and renewed neutron diffraction, to probe the presumed underlying multipolar order.