Anomalous diffusion on a fractal mesh


Abstract in English

An exact analytical analysis of anomalous diffusion on a fractal mesh is presented. The fractal mesh structure is a direct product of two fractal sets which belong to a main branch of backbones and side branch of fingers. The fractal sets of both backbones and fingers are constructed on the entire (infinite) $y$ and $x$ axises. To this end we suggested a special algorithm of this special construction. The transport properties of the fractal mesh is studied, in particular, subdiffusion along the backbones is obtained with the dispersion relation $langle x^2(t)ranglesim t^{beta}$, where the transport exponent $beta<1$ is determined by the fractal dimensions of both backbone and fingers. Superdiffusion with $beta>1$ has been observed as well when the environment is controlled by means of a memory kernel.

Download