Do you want to publish a course? Click here

Origins and control of the polarization splitting in exciton-polaritons microwires

108   0   0.0 ( 0 )
 Added by Emmanuel Baudin Dr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the experimental investigation of the polarization-dependent energy splitting in the lower exciton-polariton branches of a 1D microcavity. The splitting observed for the lowest branch can reach up to 1 meV. It does not result from low temperature thermal constraints but from anisotropic mechanical internal strains induced by etching. Those strains remove the degeneracy both in the photonic ($delta E_{mathrm{ph}}$) and excitonic ($delta E_{mathrm{exc}}$) components of the polariton but also in the photon-exciton coupling ($deltaOmega$). Those three contributions are accurately infered from experimental data. It appears that the sign and magnitude of the polarization splitting as well as the linear polarization of the corresponding polariton eigenstates can be tuned through the bare exciton-photon detuning. Moreover, no dependence on the width of the wire (from 3 to 7 $mathrm{mu}$m) is observed. We propose a mechanical model explaining the universality of those observations paving the way to the engineering of polarization eigenstates in microwires exciton-polaritons.



rate research

Read More

Atomically thin crystals of transition metal dichalcogenides are ideally suited to study the interplay of light-matter coupling, polarization and magnetic field effects. In this work, we investiagte the formation of exciton-polaritons in a MoSe2 monolayer, which is integrated in a fully-grown, monolithic microcavity. Due to the narrow linewidth of the polaritonic resonances, we are able to directly investigate the emerging valley Zeeman splitting of the hybrid light-matter resonances in the presence of a magnetic field. At a detuning of -54.5 meV (13.5 % matter constituent of the lower polariton branch), we find a Zeeman splitting of the lower polariton branch of 0.36 meV, which can be directly associated with an excitonic g factor of 3.94pm0.13. Remarkably, we find that a magnetic field of 6T is sufficient to induce a notable valley polarization of 15 % in our polariton system, which approaches 30% at 9T. Strikingly, this circular polarization degree of the polariton (ground) state exceeds the polarization of the exciton reservoir for equal magnetic field magnitudes by approximately 50%, as a consequence of enhanced relaxation of bosons in our monolayer-based system.
69 - M. Krol , K. Lekenta , R. Mirek 2018
Monolayer transition metal dichalcogenides, known for exhibiting strong excitonic resonances, constitute a very interesting and versatile platform for investigation of light-matter interactions. In this work we report on a strong coupling regime between excitons in monolayer WSe2 and photons confined in an open, voltage-tunable dielectric microcavity. The tunability of our system allows us to extend the exciton-polariton state over a wide energy range and, in particular, to bring the excitonic component of the lower polariton mode into resonance with other excitonic transitions in monolayer WSe2. With selective excitation of spin-polarized exciton-polaritons we demonstrate the valley polarization when the polaritons from the lower branch come into resonance with a bright trion state in monolayer WSe2 and valley depolarization when they are in resonance with a dark trion state.
Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the hidden variable which characterizes the rate of exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.
We investigate the origin of overshoots in the exciton spin dynamics after resonant optical excitation. As a material system, we focus on diluted magnetic semiconductor quantum wells as they provide a strong spin-flip scattering for the carriers. Our study shows that overshoots can appear as a consequence of radiative decay even on the single-particle level in a theory without any memory. The magnitude of the overshoots in this case depends strongly on the temperature as well as the doping fraction of the material. If many-body effects beyond the single-particle level become important so that a quantum-kinetic description is required, a spin overshoot appears already without radiative decay and is much more robust against variations of system parameters. We show that the origin of the spin overshoot can be determined either via its temperature dependence or via its behavior for different doping fractions. The results can be expected to apply to a wide range of semiconductors as long as radiative decay and a spin-flip mechanism are present.
We report on single InGaAs quantum dots embedded in a lateral electric field device. By applying a voltage we tune the neutral exciton transition into resonance with the biexciton using the quantum confined Stark effect. The results are compared to theoretical calculations of the relative energies of exciton and biexciton. Cascaded decay from the manifold of single exciton-biexciton states has been predicted to be a new concept to generate entangled photon pairs on demand without the need to suppress the fine structures splitting of the neutral exciton.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا