Do you want to publish a course? Click here

Robustness of Majorana bound states in the short junction limit

198   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This short junction limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: $g$-factor, effective electron mass, and the semiconductor-superconductor interface transparency.



rate research

Read More

Topological superconductivity supports exotic Majorana bound states (MBS) which are chargeless zero-energy emergent quasiparticles. With their non-Abelian exchange statistics and fractionalization of a single electron stored nonlocally as a spatially separated MBS, they are particularly suitable for implementing fault-tolerant topological quantum computing. While the main efforts to realize MBS have focused on one-dimensional systems, the onset of topological superconductivity requires delicate parameter tuning and geometric constraints pose significant challenges for their control and demonstration of non-Abelian statistics. To overcome these challenges, building on recent experimental advances in planar Josephson junctions (JJs), we propose a MBS platform of X-shaped JJs. This versatile implementation reveals how external flux control of the superconducting phase difference can generate and manipulate multiple MBS pairs to probe non-Abelian statistics. The underlying topological superconductivity exists over a large parameter space, consistent with materials used in our fabrication of such X junctions, as an important step towards scalable topological quantum computing.
A phase from an adiabatic exchange of Majorana bound states (MBS) reveals their exotic anyonic nature. For detecting this exchange phase, we propose an experimental setup consisting of a Corbino-geometry Josephson junction on the surface of a topological insulator, in which two MBS at zero energy can be created and rotated. We find that if a metallic tip is weakly coupled to a point on the junction, the time-averaged differential conductance of the tip-Majorana coupling shows peaks at the tip voltages $eV = pm (alpha - 2pi l) hbar/ T_J$, where $alpha = pi/2$ is the exchange phase of the two circulating MBS, $T_J$ is the half rotation time of MBS, and $l$ an integer. This result constitutes a clear experimental signature of Majorana fermion exchange.
79 - S. Ikegaya , Y. Asano 2016
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across the junction $varphi$ being $pi$, we will show that all of the Majorana bound states in the normal metal belong to the same chirality. Due to this pure chiral feature, the Majorana bound states retain their high degree of degeneracy at the zero energy even in the presence of random potential. As a consequence, the resonant transmission of a Cooper pair via the degenerate MBSs carries the Josephson current at $varphi=pi-0^+$, which explains the fractional current-phase relationship discussed in a number of previous papers.
As part of the intense effort towards identifying platforms in which Majorana bound states can be realized and manipulated to perform qubit operations, we propose a topological Josephson junction architecture that achieves these capabilities and which can be experimentally implemented. The platform uses conventional superconducting electrodes deposited on a topological insulator film to form networks of proximity-coupled lateral Josephson junctions. Magnetic fields threading the network of junction barriers create Josephson vortices that host Majorana bound states localized in the junction where the local phase difference is an odd multiple of $pi$, i.e. attached to the cores of the Josephson vortices. This enables us to manipulate the Majorana states by moving the Josephson vortices, achieving functionality exclusive to these systems in contrast to others, such as those composed of topological superconductor nanowires. We describe protocols for: 1) braiding localized Majorana states by exchange, 2) controlling the separation and hence the coupling of adjacent localized Majorana states to effect non-Abelian rotations via hybridization of the Majorana modes, and 3) reading out changes in the non-local parity correlations induced by such operations. These schemes make use of the application of current pulses and local magnetic field pulses to control the location of vortices, and measurements of the Josephson current-phase relation to reveal the presence of the Majorana bound states. We describe the architecture and schemes in the context of experiments currently underway.
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transition): one is characterized by finite-energy in-gap Andreev bound states, while the other has only extended bulk states. The Andreev bound state regime is characterized by strong features in the tunneling spectra creating a gap closure signature, but no gap reopening signature should be apparent above the topological quantum phase transition, in agreement with most recent experimental observations. The gap closure feature is actually the coming together of the Andreev bound states at high chemical potential rather than a simple trivial gap of extended bulk states closing at the transition. Our theoretical finding establishes the generic intrinsic Andreev bound states on the trivial side of the topological quantum phase transition as the main contributors to the tunneling conductance spectra, providing a generic interpretation of existing experiments in clean Majorana nanowires. Our work also explains why experimental tunnel conductance spectra generically have gap closing features below the topological quantum phase transition, but no gap opening features above it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا