Do you want to publish a course? Click here

Inapplicability of exact constraints and a minimal two-parameter generalization to the DFT+$U$ based correction of self-interaction error

77   0   0.0 ( 0 )
 Added by Glenn Moynihan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In approximate density functional theory (DFT), the self-interaction error is an electron delocalization anomaly associated with underestimated insulating gaps. It exhibits a predominantly quadratic energy-density curve that is amenable to correction using efficient, constraint-resembling methods such as DFT + Hubbard $U$ (DFT+$U$). Constrained DFT (cDFT) enforces conditions on DFT exactly, by means of self-consistently optimized Lagrange multipliers, and while its use to automate error corrections is a compelling possibility, we show that it is limited by a fundamental incompatibility with constraints beyond linear order. We circumvent this problem by utilizing separate linear and quadratic correction terms, which may be interpreted either as distinct constraints, each with its own Hubbard $U$ type Lagrange multiplier, or as the components of a generalized DFT+$U$ functional. The latter approach prevails in our tests on a model one-electron system, $H_2^+$, in that it readily recovers the exact total-energy while symmetry-preserving pure constraints fail to do so. The generalized DFT+$U$ functional moreover enables the simultaneous correction of the total-energy and ionization potential or the correction of either together with the enforcement of Koopmans condition. For the latter case, we outline a practical, approximate scheme by which the required pair of Hubbard parameters, denoted as U1 and U2, may be calculated from first-principles.



rate research

Read More

While density functional theory (DFT) is widely applied for its combination of cost and accuracy, corrections (e.g., DFT+U) that improve it are often needed to tackle correlated transition-metal chemistry. In principle, the functional form of DFT+U, consisting of a set of localized atomic orbitals (AO) and a quadratic energy penalty for deviation from integer occupations of those AOs, enables the recovery of the exact conditions of piecewise linearity and the derivative discontinuity. Nevertheless, for practical transition-metal complexes, where both atomic states and ligand orbitals participate in bonding, standard DFT+U can fail to eliminate delocalization error (DE). Here, we show that by introducing an alternative valence-state (i.e., molecular orbital or MO) basis to the DFT+U approach, we recover exact conditions in cases where standard DFT+U corrections have no error-reducing effect. This MO-based DFT+U also eliminates DE where standard AO-based DFT+U is already successful. We demonstrate the transferability of our approach on a range of ligand field strengths (i.e., from H_2O to CO), electron configurations (i.e., from Sc to Fe to Zn), and spin states (i.e., low-spin and high-spin) in representative transition-metal complexes.
Myoglobin modulates the binding of diatomic molecules to its heme group via hydrogen-bonding and steric interactions with neighboring residues, and is an important benchmark for computational studies of biomolecules. We have performed calculations on the heme binding site and a significant proportion of the protein environment (more than 1000 atoms) using linear-scaling density functional theory and the DFT+U method to correct for self-interaction errors associated with localized 3d states. We confirm both the hydrogen-bonding nature of the discrimination effect (3.6 kcal/mol) and assumptions that the relative strain energy stored in the protein is low (less than 1 kcal/mol). Our calculations significantly widen the scope for tackling problems in drug design and enzymology, especially in cases where electron localization, allostery or long-ranged polarization influence ligand binding and reaction.
The Perdew-Zunger self-interaction correction(PZ-SIC) improves the performance of density functional approximations(DFAs) for the properties that involve significant self-interaction error(SIE), as in stretched bond situations, but overcorrects for equilibrium properties where SIE is insignificant. This overcorrection is often reduced by LSIC, local scaling of the PZ-SIC to the local spin density approximation(LSDA). Here we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of atomic number Z in the asymptotic expansion of the exchange-correlation(xc) energy for atoms. LSIC and LSIC+ are scaled by functions of the iso-orbital indicator z{sigma}, which distinguishes one-electron regions from many-electron regions. LSIC+ applied to LSDA works better for many equilibrium properties than LSDA-LSIC and the Perdew, Burke, and Ernzerhof(PBE) generalized gradient approximation(GGA), and almost as well as the strongly constrained and appropriately normed(SCAN) meta-GGA. LSDA-LSIC and LSDA-LSIC+, however, both fail to predict interaction energies involving weaker bonds, in sharp contrast to their earlier successes. It is found that more than one set of localized SIC orbitals can yield a nearly degenerate energetic description of the same multiple covalent bond, suggesting that a consistent chemical interpretation of the localized orbitals requires a new way to choose their Fermi orbital descriptors. To make a locally scaled-down SIC to functionals beyond LSDA requires a gauge transformation of the functionals energy density. The resulting SCAN-sdSIC, evaluated on SCAN-SIC total and localized orbital densities, leads to an acceptable description of many equilibrium properties including the dissociation energies of weak bonds.
We use the recently-developed Heat-bath Configuration Interaction (HCI) algorithm as an efficient active-space solver to perform multi-configuration self-consistent field calculations (HCISCF) with large active spaces. We give a detailed derivation of the theory and show that difficulties associated with non-variationality of the HCI procedure can be overcome by making use of the Lagrangian formulation to calculate the HCI relaxed two body reduced density matrix. HCISCF is then used to study the electronic structure of butadiene, pentacene, and Fe-porphyrin. One of the most striking results of our work is that the converged active space orbitals obtained from HCISCF are relatively insensitive to the accuracy of the HCI calculation. This allows us to obtain nearly converged CASSCF energies with an estimated error of less than 1 mHa using the orbitals obtained from the HCISCF procedure in which the integral transformation is the dominant cost. For example, an HCISCF calculation on Fe-Porphyrin model complex with an active space of (44e, 44o) took only 412 seconds per iteration on a single node containing 28 cores, out of which 185 seconds were spent in the HCI calculation and the remaining 227 seconds were mainly used for integral transformation. Finally, we also show that active-space orbitals can be optimized using HCISCF to substantially speed up the convergence of the HCI energy to the Full CI limit because HCI is not invariant to unitary transformations within the active space.
A recently proposed local self-interaction correction (LSIC) method [Zope textit{et al.} J. Chem. Phys., 2019,{bf 151}, 214108] when applied to the simplest local density approximation provides significant improvement over standard Perdew-Zunger SIC (PZSIC) for both equilibrium properties such as total or atomization energies as well as properties involving stretched bond such as barrier heights. The method uses an iso-orbital indicator to identify the single-electron regions. To demonstrate the LSIC method, Zope textit{et al.} used the ratio $z_sigma$ of von Weizsacker $tau_sigma^W$ and total kinetic energy densities $tau_sigma$, ($z_sigma = tau_sigma^W/tau_sigma$) as a scaling factor to scale the self-interaction correction. The present work further explores the LSIC method using a simpler scaling factor as a ratio of orbital and spin densities in place of the ratio of kinetic energy densities. We compute a wide array of both, equilibrium and non-equilibrium properties using the LSIC and orbital scaling methods using this simple scaling factor and compare them with previously reported results. Our study shows that the present results with simple scaling factor are comparable to those obtained by LSIC($z_sigma$) for most properties but have slightly larger errors. We furthermore study the binding energies of small water clusters using both the scaling factors. Our results show that LSIC with $z_{sigma}$ has limitation in predicting the binding energies of weakly bonded system due to the inability of $z_{sigma}$ to distinguish weakly bonded region from slowly varying density region. LSIC when used with density ratio as a scaling factor, on the other hand, provides good description of water cluster binding energies, thus highlighting the appropriate choice of iso-orbital indicator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا