No Arabic abstract
In an era of extensive photometric observations, the catalogs of RR Lyr type variable stars number tens of thousands of objects. The relation between the iron abundance [Fe/H] and the Fourier parameters of the stars light curve allows us to investigate mean metallicities and metallicity gradients in various stellar environments, independently of time-consuming spectroscopic observations. In this paper we use almost 6500 $V$- and $I$-band light curves of fundamental mode RR Lyr stars from the OGLE-IV survey to provide a relation between the $V$- and $I$-band phase parameter $varphi_{31}$ used to estimate [Fe/H]. The relation depends on metallicity, which limits its applicability. We apply this relation to metallicity formulae developed for the Johnson $V$- and the Kepler $Kp$-band to obtain the relation between [Fe/H] and $varphi_{31}$ for the $I$-band photometry. Last, we apply the new relation of Nemec to the OGLE-IV fundamental mode RR Lyr stars data and construct a metallicity map of the Magellanic Clouds. Median [Fe/H] is $-1.39pm0.44$ dex for the LMC and $-1.77pm0.48$ dex for the SMC, on the Jurcsik metallicity scale. We also find a metallicity gradient within the LMC with a slope of $-0.029pm0.002$ dex/kpc in the inner 5 kpc and $-0.030 pm0.003$ dex/kpc beyond 8 kpc, and no gradient in-between ($-0.019pm0.002$ dex/kpc integrally). We do not observe a metallicity gradient in the SMC, although we show that the metal-rich RRab stars are more concentrated toward the SMC center than the metal-poor.
We present newly-calibrated period-$phi_{31}$-[Fe/H] relations for fundamental mode RR Lyrae stars in the optical and, for the first time, mid-infrared. This works calibration dataset provides the largest and most comprehensive span of parameter space to date with homogeneous metallicities from $-3<textrm{[Fe/H]}<0.4$ and accurate Fourier parameters derived from 1980 ASAS-SN ($V$-band) and 1083 WISE (NEOWISE extension, $W1$ and $W2$ bands) RR Lyrae stars with well-sampled light curves. We compare our optical period-$phi_{31}$-[Fe/H] with those available in the literature and demonstrate that our relation minimizes systematic trends in the lower and higher metallicity range. Moreover, a direct comparison shows that our optical photometric metallicities are consistent with both those from high-resolution spectroscopy and globular clusters, supporting the good performance of our relation. We found an intrinsic scatter in the photometric metallicities (0.41 dex in the $V$-band and 0.50 dex in the infrared) by utilizing large calibration datasets covering a broad metallicity range. This scatter becomes smaller when optical and infrared bands are used together (0.37 dex). Overall, the relations derived in this work have many potential applications, including large-area photometric surveys with JWST in the infrared and LSST in the optical.
We present a three-dimensional analysis of a sample of 22 859 type $ab$ RR Lyrae stars in the Magellanic System from the OGLE-IV Collection of RR Lyrae stars. The distance to each object was calculated based on its photometric metallicity and a theoretical relation between color, absolute magnitude and metallicity. The LMC RR Lyrae distribution is very regular and does not show any substructures. We demonstrate that the bar found in previous studies may be an overdensity caused by blending and crowding effects. The halo is asymmetrical with a higher stellar density in its north-eastern area, which is also located closer to us. Triaxial ellipsoids were fitted to surfaces of a constant number density. Ellipsoids farther from the LMC center are less elongated and slightly rotated toward the SMC. The inclination and position angle change significantly with the $a$ axis size. The median axis ratio is $1:1.23:1.45$. The RR Lyrae distribution in the SMC has a very regular, ellipsoidal shape and does not show any substructures or asymmetries. All triaxial ellipsoids fitted to surfaces of a constant number density have virtually the same shape (axis ratio) and are elongated along the line of sight. The median axis ratio is $1:1.10:2.13$. The inclination angle is very small and thus the position angle is not well defined. We present the distribution of RR Lyrae stars in the Magellanic Bridge area, showing that the Magellanic Clouds halos overlap. A comparison of the distributions of RR Lyrae stars and Classical Cepheids shows that the former are significantly more spread and distributed regularly, while the latter are very clumped and form several distinct substructures.
We present a detailed analysis of Magellanic Bridge Cepheid sample constructed using the OGLE Collection of Variable Stars. Our updated Bridge sample contains 10 classical and 13 anomalous Cepheids. We calculate their individual distances using optical period--Wesenheit relations and construct three-dimensional maps. Classical Cepheids on-sky locations match very well neutral hydrogen and young stars distributions, thus they add to the overall Bridge young population. In three dimensions, eight out of ten classical Cepheids form a bridge-like connection between the Magellanic Clouds. The other two are located slightly farther and may constitute the Counter Bridge. We estimate ages of our Cepheids to be less than 300 Myr for five up to eight out of ten, depending on whether the rotation is included. This is in agreement with a scenario where these stars were formed in-situ after the last encounter of the Magellanic Clouds. Cepheids proper motions reveal that they are moving away from both Large and Small Magellanic Cloud. Anomalous Cepheids are more spread than classical Cepheids in both two and three dimensions. Even though, they form a rather smooth connection between the Clouds. However, this connection does not seem to be bridge-like, as there are many outliers around both Magellanic Clouds.
We present the most extensive and detailed reddening maps of the Magellanic Clouds (MCs) derived from the color properties of Red Clump (RC) stars. The analysis is based on the deep photometric maps from the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV), covering approximately 670 deg2 of the sky in the Magellanic System region. The resulting maps provide reddening information for 180 deg2 in the Large Magellanic Cloud (LMC) and 75 deg2 in the Small Magellanic Cloud (SMC), with a resolution of 1.7x1.7 arcmin in the central parts of the MCs, decreasing to approximately 27x27 arcmin in the outskirts. The mean reddening is E(V-I) = 0.100 +- 0.043 mag in the LMC and E(V-I) = 0.047 +- 0.025 mag in the SMC. We refine methods of calculating the RC color to obtain the highest possible accuracy of reddening maps based on RC stars. Using spectroscopy of red giants, we find the metallicity gradient in both MCs, which causes a slight decrease of the intrinsic RC color with distance from the galaxy center of ~0.002 mag/deg in the LMC and between 0.003 and 0.009 mag/deg in the SMC. The central values of the intrinsic RC color are 0.886 and 0.877 mag in the LMC and SMC, respectively. The reddening map of the MCs is available on-line both in the downloadable form and as an interactive interface.
We present a three-dimensional structure of the Magellanic System using over 9 000 Classical Cepheids and almost 23 000 RR Lyrae stars from the OGLE Collection of Variable Stars. Given the vast coverage of the OGLE-IV data and very high completeness of the sample, we were able to study the Magellanic System in great details. We very carefully studied the distribution of both types of pulsators in the Magellanic Bridge area. We show that there is no evident physical connection between the Clouds in RR Lyrae stars distribution. We only see the two extended structures overlapping. There are few classical Cepheids in the Magellanic Bridge area that seem to form a genuine connection between the Clouds. Their on-sky locations match very well young stars and neutral hydrogen density contours. We also present three-dimensional distribution of classical pulsators in both Magellanic Clouds.