Do you want to publish a course? Click here

Superoutburst of CR Bootis: Estimation of Mass Ratio of a typical AM CVn star by Stage A Superhumps

71   0   0.0 ( 0 )
 Added by Keisuke Isogai
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on two superoutbursts of the AM CVn-type object CR Boo in 2014 April--March and 2015 May--June. A precursor outburst acompanied both of these superoutbursts. During the rising branch of the main superoutburst in 2014, we detected growing superhumps (stage A superhumps) whose period was $0.017669(24)$ d. Assuming that this period reflects the dynamical precession rate at the radius of the 3:1 resonance, we could estimate the mass ratio ($q=M_2/M_1$) of 0.101(4) by using the stage A superhump period and the orbital one of 0.0170290(6) d. This mass ratio is consistent with that expected by the theoretical evolutionary model of AM CVn-type objects. The detection of precursor outbursts and stage A superhumps is the second case in AM CVn-type objects. There are two interpretations of the outbursts of AM CVn-type objects. One is a dwarf nova (DN) outbursts analogy, which is caused by thermal and tidal instabilities. Another is the VY Scl-type variation, which is caused by the variation of the mass-transfer rate of the secondary. This detection of the superhump variations strongly suggests the former interpretation.

rate research

Read More

We report on a superoutburst of the AM CVn-type object SDSS J090221.35+381941.9 [J0902; orbital period 0.03355(6) d] in 2014 March-April. The entire outburst consisted of a precursor outburst and the main superoutburst, followed by a short rebrightening. During the rising branch of the main superoutburst, we detected growing superhumps (stage A superhumps) with a period of 0.03409(1) d. During the plateau phase of the superoutburst, superhumps with a shorter period (stage B superhumps) were observed. Using the orbital period and the period of the stage A superhumps, we were able to measure the dynamical precession rate of the accretion disk at the 3:1 resonance, and obtained a mass ratio (q) of 0.041(7). This is the first successful measurement of the mass ratio in an AM CVn-type object using the recently developed stage A superhump method. The value is generally in good agreement with the theoretical evolutionary model. The orbital period of J0902 is the longest among the outbursting AM CVn-type objects, and the borderline between the outbursting systems and systems with stable cool disks appears to be longer than had been supposed.
We examine the relationship between superoutburst duration $t_{rm dur}$ and orbital period $P_{rm orb}$ in AM CVn ultra-compact binary systems. We show that the previously determined steep relation derived by Levitan et al (2015) was strongly influenced by the inclusion of upper limits for systems with a relatively long orbital period in their fit. Excluding the upper limit values and including $t_{rm dur}$ values for three systems at long $P_{rm orb}$ which were not considered previously, then $d log (t_{rm dur})/ d log (P_{rm orb})$ is flat as predicted by Cannizzo & Nelemans(2015)
77 - Taichi Kato 2021
CzeV404 is an SU UMa-type dwarf nova in the period gap. Kara et al. (2021) (arXiv:2107.02664) recently published photometric and spectroscopic observations and obtained a mass ratio q=0.16, which is in severe disagreement of q~0.32 estimated from superhump observations (Bakowska et al., 2014). I here present what analysis was wrong or outdated in Bakowska et al. (2014) and provide a new value of q=0.247(5), consistent with the known behavior of superhumps and the evolution of cataclysmic variables. CzeV404 does not look like an unusual dwarf nova as suggested by Kara et al. (2021) and I discuss that the link between SW Sex and SU UMa systems suggested by Kara et al. (2021) is not supported.
We consider initial stage of the evolution of AM CVn type stars with white dwarf donors, which is accompanied by thermonuclear explosions in the layer of accreted He. It is shown that the accretion never results in detonation of He and accretors in AM CVn stars finish their evolution as massive WDs. We found, for the first time, that in the outbursts the synthesis of n-rich isotopes, initiated by the ${mathrm{^{22}{Ne}(alpha,n)^{25}Mg}}$ reaction becomes possible.
We report on a discovery of negative superhumps during the 2011 January superoutburst of ER UMa. During the superoutburst which started on 2011 January 16, we detected negative superhumps having a period of 0.062242(9) d, shorter than the orbital period by 2.2%. No evidence of positive superhumps was detected during this observation. This finding indicates that the disk exhibited retrograde precession during this superoutburst, contrary to all other known cases of superoutbursts. The duration of this superoutburst was shorter than those of ordinary superoutbursts and the intervals of normal outbursts were longer than ordinary ones. We suggest a possibility that such unusual outburst properties are likely a result of the disk tilt, which is supposed to be a cause of negative superhumps: the tilted disk could prevent the disk from being filled with materials in the outmost region which is supposed to be responsible for long-duration superoutbursts in ER UMa-type dwarf novae. The discovery signifies the importance of the classical prograde precession in sustaining long-duration superoutbursts. Furthermore, the presence of pronounced negative superhumps in this system with a high mass-transfer rate favors the hypothesis that hydrodynamical lift is the cause of the disk tilt.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا