Nernst effect in metals and superconductors: a review of concepts and experiments


Abstract in English

The Nernst effect is the transverse electric field produced by a longitudinal thermal gradient in presence of magnetic field. In the beginning of this century, Nernst experiments on cuprates were analyzed assuming that: i) The contribution of quasi-particles to the Nernst signal is negligible; and ii) Gaussian superconducting fluctuations cannot produce a Nernst signal well above the critical temperature. Both these assumptions were contradicted by subsequent experiments. This paper reviews experiments documenting multiple sources of a Nernst signal, which, according to the Brigman relation, measures the flow of transverse entropy caused by a longitudinal particle flow. Along the lines of Landauers approach to transport phenomena, the magnitude of the transverse magneto-thermoelectric response is linked to the quantum of thermoelectric conductance and a number of material-dependent length scales: the mean-free-path, the Fermi wavelength, the de Broglie thermal wavelength and the superconducting coherence length. Extremely mobile quasi-particles in dilute metals generate a widely-documented Nernst signal. Fluctuating Cooper pairs in the normal state of superconductors have been found to produce a detectable Nernst signal with an amplitude conform to the Gaussian theory, first conceived by Ussishkin, Sondhi and Huse. In addition to these microscopic sources, mobile Abrikosov vortices, mesoscopic objects carrying simultaneously entropy and magnetic flux, can produce a sizeable Nernst response. Finally, in metals subject to a magnetic field strong enough to truncate the Fermi surface to a few Landau tubes, each exiting tube generates a peak in the Nernst response. The survey of these well-established sources of the Nernst signal is a helpful guide to identify the origin of the Nernst signal in other controversial cases.

Download