No Arabic abstract
This paper presents a new Bayesian non-parametric model by extending the usage of Hierarchical Dirichlet Allocation to extract tree structured word clusters from text data. The inference algorithm of the model collects words in a cluster if they share similar distribution over documents. In our experiments, we observed meaningful hierarchical structures on NIPS corpus and radiology reports collected from public repositories.
Word embedding models such as Skip-gram learn a vector-space representation for each word, based on the local word collocation patterns that are observed in a text corpus. Latent topic models, on the other hand, take a more global view, looking at the word distributions across the corpus to assign a topic to each word occurrence. These two paradigms are complementary in how they represent the meaning of word occurrences. While some previous works have already looked at using word embeddings for improving the quality of latent topics, and conversely, at using latent topics for improving word embeddings, such two-step methods cannot capture the mutual interaction between the two paradigms. In this paper, we propose STE, a framework which can learn word embeddings and latent topics in a unified manner. STE naturally obtains topic-specific word embeddings, and thus addresses the issue of polysemy. At the same time, it also learns the term distributions of the topics, and the topic distributions of the documents. Our experimental results demonstrate that the STE model can indeed generate useful topic-specific word embeddings and coherent latent topics in an effective and efficient way.
We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is significantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks---word similarity ranking, analogies, sentence completion, and sentiment analysis---demonstrate that the method outperforms or is competitive with state-of-the-art methods. Our word representations are available at url{http://www.ark.cs.cmu.edu/dyogatam/wordvecs/}.
Historically, the Natural Language Processing area has been given too much attention by many researchers. One of the main motivation beyond this interest is related to the word prediction problem, which states that given a set words in a sentence, one can recommend the next word. In literature, this problem is solved by methods based on syntactic or semantic analysis. Solely, each of these analysis cannot achieve practical results for end-user applications. For instance, the Latent Semantic Analysis can handle semantic features of text, but cannot suggest words considering syntactical rules. On the other hand, there are models that treat both methods together and achieve state-of-the-art results, e.g. Deep Learning. These models can demand high computational effort, which can make the model infeasible for certain types of applications. With the advance of the technology and mathematical models, it is possible to develop faster systems with more accuracy. This work proposes a hybrid word suggestion model, based on Naive Bayes and Latent Semantic Analysis, considering neighbouring words around unfilled gaps. Results show that this model could achieve 44.2% of accuracy in the MSR Sentence Completion Challenge.
Recent research demonstrates that word embeddings, trained on the human-generated corpus, have strong gender biases in embedding spaces, and these biases can result in the discriminative results from the various downstream tasks. Whereas the previous methods project word embeddings into a linear subspace for debiasing, we introduce a textit{Latent Disentanglement} method with a siamese auto-encoder structure with an adapted gradient reversal layer. Our structure enables the separation of the semantic latent information and gender latent information of given word into the disjoint latent dimensions. Afterwards, we introduce a textit{Counterfactual Generation} to convert the gender information of words, so the original and the modified embeddings can produce a gender-neutralized word embedding after geometric alignment regularization, without loss of semantic information. From the various quantitative and qualitative debiasing experiments, our method shows to be better than existing debiasing methods in debiasing word embeddings. In addition, Our method shows the ability to preserve semantic information during debiasing by minimizing the semantic information losses for extrinsic NLP downstream tasks.
Multi-turn conversations consist of complex semantic structures, and it is still a challenge to generate coherent and diverse responses given previous utterances. Its practical that a conversation takes place under a background, meanwhile, the query and response are usually most related and they are consistent in topic but also different in content. However, little work focuses on such hierarchical relationship among utterances. To address this problem, we propose a Conversational Semantic Relationship RNN (CSRR) model to construct the dependency explicitly. The model contains latent variables in three hierarchies. The discourse-level one captures the global background, the pair-level one stands for the common topic information between query and response, and the utterance-level ones try to represent differences in content. Experimental results show that our model significantly improves the quality of responses in terms of fluency, coherence and diversity compared to baseline methods.