Do you want to publish a course? Click here

Cascades in interdependent flow networks

61   0   0.0 ( 0 )
 Added by Antonio Scala PhD
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems failure.



rate research

Read More

Interdependencies are ubiquitous throughout the world. Every real-world system interacts with and is dependent on other systems, and this interdependency affects their performance. In particular, interdependencies among networks make them vulnerable to failure cascades, the effects of which are often catastrophic. Failure propagation fragments network components, disconnects them, and may cause complete systemic failure. We propose a strategy of avoiding or at least mitigating the complete destruction of a system of interdependent networks experiencing a failure cascade. Starting with a fraction $1-p$ of failing nodes in one network, we reconnect with a probability $gamma$ every isolated component to a functional giant component (GC), the largest connected cluster. We find that as $gamma$ increases the resilience of the system to cascading failure also increases. We also find that our strategy is more effective when it is applied in a network of low average degree. We solve the problem theoretically using percolation theory, and we find that the solution agrees with simulation results.
In many real network systems, nodes usually cooperate with each other and form groups, in order to enhance their robustness to risks. This motivates us to study a new type of percolation, group percolation, in interdependent networks under attacks. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this novel group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with inter-similarity structures, which attract many attentions very recently, onto the group percolation and confirm the non-existence of continuous phase transitions.
Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy of nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery $gamma$, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction $1-p$ of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane $gamma-p$ of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot avoid the system collapse.
Many real-world networks depend on other networks, often in non-trivial ways, to maintain their functionality. These interdependent networks of networks are often extremely fragile. When a fraction $1-p$ of nodes in one network randomly fails, the damage propagates to nodes in networks that are interdependent and a dynamic failure cascade occurs that affects the entire system. We present dynamic equations for two interdependent networks that allow us to reproduce the failure cascade for an arbitrary pattern of interdependency. We study the rich club effect found in many real interdependent network systems in which the high-degree nodes are extremely interdependent, correlating a fraction $alpha$ of the higher degree nodes on each network. We find a rich phase diagram in the plane $p-alpha$, with a triple point reminiscent of the triple point of liquids that separates a non-functional phase from two functional phases.
The functionality of nodes in a network is often described by the structural feature of belonging to the giant component. However, when dealing with problems like transport, a more appropriate functionality criterion is for a node to belong to the networks backbone, where the flow of information and of other physical quantities (such as current) occurs. Here we study percolation in a model of interdependent resistor networks and show the effect of spatiality on their coupled functioning. We do this on a realistic model of spatial networks, featuring a Poisson distribution of link-lengths. We find that interdependent resistor networks are significantly more vulnerable than their percolation-based counterparts, featuring first-order phase transitions at link-lengths where the mutual giant component still emerges continuously. We explain this apparent contradiction by tracing the origin of the increased vulnerability of interdependent transport to the crucial role played by the dandling ends. Moreover, we interpret these differences by considering an heterogeneous $k$-core percolation process which enables to define a one-parameter family of functionality criteria whose constraints become more and more stringent. Our results highlight the importance that different definitions of nodes functionality have on the collective properties of coupled processes, and provide better understanding of the problem of interdependent transport in many real-world networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا