Do you want to publish a course? Click here

Generalized Schrodinger cat states and their classical emulation

144   0   0.0 ( 0 )
 Added by Iran Ramos
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schrodinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacement operator. Consequently, such generalized cat states can be formally considered as nonlinear coherent states. We then show that Glauber-Fock photonic lattices endowed with alternating positive and negative coupling coefficients give rise to classical analogs of such cat states. In addition, it is pointed out that the analytic propagator of these deformed Glauber-Fock arrays explicitly contains the Wigner operator opening the possibility to observe Wigner functions of the quantum harmonic oscillator in the classical domain.



rate research

Read More

Recently, using conditioning approaches on the high-harmonic generation process induced by intense laser-atom interactions, we have developed a new method for the generation of optical Schrodinger cat states (M. Lewenstein et al., arXiv:2008.10221 (2020)). These quantum optical states have been proven to be very manageable as, by modifying the conditions under which harmonics are generated, one can interplay between $textit{kitten}$ and $textit{genuine cat}$ states. Here, we demonstrate that this method can also be used for the development of new schemes towards the creation of optical Schrodinger cat states, consisting of the superposition of three distinct coherent states. Apart from the interest these kind of states have on their own, we additionally propose a scheme for using them towards the generation of large cat states involving the sum of two different coherent states. The quantum properties of the obtained superpositions aim to significantly increase the applicability of optical Schrodinger cat states for quantum technology and quantum information processing.
301 - P. Adam , T. Kiss , Z. Darazs 2015
Given a source of two coherent state superpositions with small separation in a traveling wave optical setting, we show that by interference and balanced homodyne measurement it is possible to conditionally prepare a symmetrically placed superposition of coherent states around the origo of the phase space. The separation of the coherent states in the superposition will be amplified during the process.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information processing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.
We propose a classical emulation methodology to emulate quantum phenomena arising from any non-classical quantum state using only a finite set of coherent states or their statistical mixtures. This allows us to successfully reproduce well-known quantum effects using resources that can be much more feasibly generated in the laboratory. We present a simple procedure to experimentally carry out quantum-state emulation with coherent states that also applies to any general set of classical states that are easier to generate, and demonstrate its capabilities in observing the Hong-Ou-Mandel effect, violating Bell inequalities and witnessing quantum non-classicality.
We propose a postselecting parity-swap amplifier for Schrodinger cat states that does not require the amplified state to be known a priori. The device is based on a previously-implemented state comparison amplifier for coherent states. It consumes only Gaussian resource states, which provides an advantage over some cat state amplifiers. It requires simple Geiger-mode photodetectors and works with high fidelity and approximately twofold gain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا