Do you want to publish a course? Click here

Quantum dynamics of incoherently driven V-type system: Analytic solutions beyond the secular approximation

95   0   0.0 ( 0 )
 Added by Timur Tscherbul
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter $zeta=frac{1}{2}(gamma_1+gamma_2)/Delta_p$, where $gamma_i$ are the radiative decay rates of the excited levels $i=1,2$, and $Delta_p=sqrt{Delta^2 + (1-p^2)gamma_1gamma_2}$ depends on the excited-state level splitting $Delta>0$ and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit ($zetagg1$), approach a long-lived quasi-steady state in the overdamped limit ($zetall 1$), and display an intermediate behavior at critical damping ($zeta= 1$). The sudden incoherent turn-on generates a mixture of excited eigenstates $|e_1rangle$ and $|e_2rangle$ and their in-phase coherent superposition $|phi_+rangle = frac{1}{sqrt{2bar{r}}}(sqrt{r_1} |e_1rangle + sqrt{r_2}|e_2rangle)$, which is remarkably long-lived in the overdamped limit (where $r_1$ and $r_2$ are the incoherent pumping rates). Formation of this coherent superposition {it enhances} the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, we identify additional asymptotic quasistationary coherences, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when $r_1=r_2$ and the transition dipole moments are fully aligned.



rate research

Read More

Light induced processes in nature occur by irradiation with slowly turned-on incoherent light. The general case of time-dependent incoherent excitation is solved here analytically for V-type systems using a newly developed master equation method. Clear evidence emerges for the disappearance of radiatively induced coherence as turn-on times of the radiation exceed characteristic system times. The latter is the case, in nature, for all relevant dynamical time scales for other than nearly degenerate energy levels. We estimate that, in the absence of non-radiative relaxation and decoherence, turn-on times slower than 1 ms (still short by natural standards) induce Fano coherences between energy eigenstates that are separated by less than 0.9 cm$^{-1}$.
A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given utilizing the formalism of the exact factorization of the molecular wavefunction [Abedi et al., PRL $textbf{105}$, 123002 (2010)] in its quantum-classical limit. Employing an exactly solvable $textrm H_2^{;+}$-like model system, it is shown that the deterministic classical nuclear motion on a single time-dependent surface in this approach describes the same physics as stochastic (hopping-induced) motion on several surfaces, provided Floquet surfaces are applied. Both quantum-classical methods do describe reasonably well the exact nuclear wavepacket dynamics for extremely different dissociation scenarios. Hopping schemes using Born-Oppenheimer surfaces or instantaneous Born-Oppenheimer surfaces fail completely.
We explore the properties of steady-state Fano coherences generated in a three-level V-system continuously pumped by polarized incoherent light in the absence of coherent driving. The ratio of the stationary coherences to excited-state populations $mathcal{C} = (1+frac{Delta^2}{gamma(r+gamma)} )^{-1}$ is maximized when the excited-state splitting $Delta$ is small compared to either the spontaneous decay rate $gamma$ or the incoherent pumping rate $r$. We demonstrate that an intriguing regime exists where the $mathcal{C}$ ratio displays a maximum as a function of the dephasing rate $gamma_d$. We attribute the surprising dephasing-induced enhancement of stationary Fano coherences to the environmental suppression of destructive interference of individual incoherent excitations generated at different times. We identify the imaginary Fano coherence with the non-equilibrium flux across a pair of qubits coupled to two independent thermal baths, unraveling a direct connection between the seemingly unrelated phenomena of incoherent driving of multilevel quantum systems and non-equilibrium quantum transport in qubit networks. The real part of the steady-state Fano coherence is found to be proportional to the deviation of excited-state populations from their values in thermodynamic equilibrium, making it possible to observe signatures of steady-state Fano coherences in excited-state populations. We put forward an experimental proposal for observing steady-state Fano coherences by detecting the total fluorescence signal emitted by Calcium atoms excited by polarized vs. isotropic incoherent light. Our analysis paves the way toward further theoretical and experimental studies of non-equilibrium coherent steady states in thermally driven atomic and molecular systems, and for the exploration of their potential role in biological processes.
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-degenerate RWA results, it is shown that ideally degenerate qubits cannot induce bipartite entanglement between their partner oscillators.
Complete positivity of a class of maps generated by master equations derived beyond the secular approximation is discussed. The connection between such class of evolutions and physical properties of the system is analyzed in depth. It is also shown that under suitable hypotheses a Zeno dynamics can be induced because of the high temperature of the bath.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا