No Arabic abstract
We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimental capabilities.
Ancilla systems are often indispensable to universal control of a nearly isolated quantum system. However, ancilla systems are typically more vulnerable to environmental noise, which limits the performance of such ancilla-assisted quantum control. To address this challenge of ancilla-induced decoherence, we propose a general framework that integrates quantum control and quantum error correction, so that we can achieve robust quantum gates resilient to ancilla noise. We introduce the path independence criterion for fault-tolerant quantum gates against ancilla errors. As an example, a path-independent gate is provided for superconducting circuits with a hardware-efficient design.
We study the Quantum Zeno Effect (QZE) induced by continuous partial measurement in the presence of short-correlated noise in the system Hamiltonian. We study the survival probability and the onset of the QZE as a function of the measurement strength, and find that, depending on the noise parameters, the quantum Zeno effect can be enhanced or suppressed by the noise in different regions of the parameter space. Notably, the conditions for the enhancement of the QZE are different when determined by the short-time or long-time behavior of the survival probability, or by the measurement strength marking the onset of the quantum Zeno regime.
We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to measure the work distribution: a Ramsey technique to measure the characteristic function and a positive operator valued measure (POVM) scheme to directly measure the work probability distribution. Then, we show that these two ideas can be understood in a unified framework for assessing work fluctuations through a generic quantum detector and describe two protocols that are able to yield complementary information. This allows us also to highlight how quantum work is affected by the presence of coherences in the systems initial state. Finally, we describe physical implementations and experimental realisations of the first two schemes.
We present a general decomposition of the Generalized Toffoli, and for completeness, the multi-target gate using an arbitrary number of clean or dirty ancilla. While prior work has shown how to decompose the Generalized Toffoli using 0, 1, or $O(n)$ many clean ancilla and 0, 1, and $n-2$ dirty ancilla, we provide a generalized algorithm to bridge the gap, i.e. this work gives an algorithm to generate a decomposition for any number of clean or dirty ancilla. While it is hard to guarantee optimality, our decompositions guarantee a decrease in circuit depth as the number of ancilla increases.
The time-symmetric formalism endows the weak measurement and its outcome, the weak value, many unique features. In particular, it allows a direct tomography of quantum states without resort to complicated reconstruction algorithms and provides an operational meaning to wave functions and density matrices. To date the direct tomography only takes the forward direction of the weak measurement. Here we propose the direct tomography of a measurement apparatus by combining the backward direction of weak measurement and retrodictive description of quantum measurement. As an experimental demonstration, the scheme is applied to the characterization of both projective measurements and general positive operator-valued measures with a photonic setup. Our work provides new insight on the symmetry between quantum states and measurements, as well as an efficient method to characterize a measurement apparatus.