Do you want to publish a course? Click here

Coupling of individual quantum emitters to channel plasmons

133   0   0.0 ( 0 )
 Added by Esteban Bermudez
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.



rate research

Read More

303 - O. Mollet , S. Huant , G. Dantelle 2012
We address the issue of the second-order coherence of single surface plasmons launched by a quantum source of light into extended gold films. The quantum source of light is made of a scanning fluorescent nanodiamond hosting five nitrogen-vacancy (NV) color centers. By using a specially designed microscopy that combines near-field optics with far-field leakage-radiation microscopy in the Fourier space and adapted spatial filtering, we find that the quantum statistics of the initial source of light is preserved after conversion to surface plasmons and propagation along the polycrystalline gold film.
Realization of integrated photonic circuits on a single chip requires controlled manipulation and integration of solid-state quantum emitters with nanophotonic components. Previous works focused on emitters embedded in a three-dimensional crystals -- such as nanodiamonds or quantum dots. In contrast, in this work we demonstrate coupling of a single emitter in a two-dimensional (2D) material, namely hexagonal boron nitride (hBN), with a tapered optical fiber and find a collection efficiency of the system is found to be 10~%. Furthermore, due to the single dipole character of the emitter, we were able to analyse the angular emission pattern of the coupled system via back focal plane imaging. The good coupling efficiency to the tapered fiber even allows excitation and detection in a fully fiber coupled way yielding a true integrated system. Our results provide evidence of the feasibility to efficiently integrate quantum emitters in 2D materials with photonic structures.
Solid-state microcavities combining ultra-small mode volume, wide-range resonance frequency tuning, as well as lossless coupling to a single mode fibre are integral tools for nanophotonics and quantum networks. We developed an integrated system providing all of these three indispensable properties. It consists of a nanofibre Bragg cavity (NFBC) with the mode volume of under 1 micro cubic meter and repeatable tuning capability over more than 20 nm at visible wavelengths. In order to demonstrate quantum light-matter interaction, we establish coupling of quantum dots to our tunable NFBC and achieve an emission enhancement by a factor of 2.7.
Graphene plasmons promise exciting nanophotonic and optoelectronic applications. Owing to their extremely short wavelengths, however, the efficient coupling of photons to graphene plasmons - critical for the development of future devices - can be challenging. Here, we propose and numerically demonstrate coupling between infrared photons and graphene plasmons by the compression of surface polaritons on tapered bulk slabs of both polar and doped- semiconductor materials. Propagation of the surface phonon polaritons (in SiC) and surface plasmon polaritons (in n-GaAs) along the tapered slabs compresses the polariton wavelengths from several micrometers to around 200 nm, which perfectly matches the wavelengths of graphene plasmons. The proposed coupling device allows for a 25% conversion of the incident photon energy into graphene plasmons and, therefore, could become an efficient route towards graphene plasmon circuitry.
We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nano-wire using a Green function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well as a plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke sub- and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا