No Arabic abstract
We report on a thermoelectric investigation of the stripe and superconducting phases of the cuprate La$_{2-x}$Ba$_{x}$CuO$_{4}$ near the $x=1/8$ doping known to host stable stripes. We use the doping and magnetic field dependence of field-symmetric Nernst effect features to delineate the phenomenology of these phases. Our measurements are consistent with prior reports of time-reversal symmetry breaking signatures above the superconducting $T_{{rm c}}$, and crucially detect a sharp, robust, field-invariant peak at the stripe charge order temperature, $T_{{rm {scriptscriptstyle CO}}}$. Our observations suggest the onset of a nontrivial charge ordered phase at $T_{{rm {scriptscriptstyle CO}}}$, and the subsequent presence of spontaneously generated vortices over a broad temperature range before the emergence of bulk superconductivity in LBCO.
Interlayer transport in high-$T_C$ cuprates is mediated by superconducting tunneling across the CuO$_2$ planes. For this reason, the terahertz frequency optical response is dominated by one or more Josephson plasma resonances and becomes highly nonlinear at fields for which the tunneling supercurrents approach their critical value, $I_C$. These large terahertz nonlinearities are in fact a hallmark of superconducting transport. Surprisingly, however, they have been documented in La$_{2-x}$Ba$_x$CuO$_4$ also above $T_C$ for doping values near $x=1/8$, and interpreted as an indication of superfluidity in the stripe phase. Here, Electric Field Induced Second Harmonic (EFISH) is used to study the dynamics of time-dependent interlayer voltages when La$_{2-x}$Ba$_x$CuO$_4$ is driven with large-amplitude terahertz pulses, in search of other characteristic signatures of Josephson tunnelling in the normal state. We show that this method is sensitive to the voltage anomalies associated with 2$pi$ Josephson phase slips, which near $x=1/8$ are observed both below and above $T_C$. These results document a new regime of nonlinear transport that shares features of sliding charge-density-waves and superconducting phase dynamics.
Optical excitation of stripe-ordered La$_{2-x}$Ba$_x$CuO$_4$ has been shown to transiently enhance superconducting tunneling between the CuO$_2$ planes. This effect was revealed by a blue-shift, or by the appearance of a Josephson Plasma Resonance in the terahertz-frequency optical properties. Here, we show that this photo-induced state can be strengthened by the application of high external magnetic fields oriented along the c-axis. For a 7-Tesla field, we observe up to a ten-fold enhancement in the transient interlayer phase correlation length, accompanied by a two-fold increase in the relaxation time of the photo-induced state. These observations are highly surprising, since static magnetic fields suppress interlayer Josephson tunneling and stabilize stripe order at equilibrium. We interpret our data as an indication that optically-enhanced interlayer coupling in La$_{2-x}$Ba$_x$CuO$_4$ does not originate from a simple optical melting of stripes, as previously hypothesized. Rather, we speculate that the photo-induced state may emerge from activated tunneling between optically-excited stripes in adjacent planes.
The correlations between stripe order, superconductivity, and crystal structure in La(2-x)Ba(x)CuO(4) single crystals have been studied by means of x-ray and neutron diffraction as well as static magnetization measurements. The derived phase diagram shows that charge stripe order (CO) coexists with bulk superconductivity in a broad range of doping around x=1/8, although the CO order parameter falls off quickly for x<>1/8. Except for x=0.155, the onset of CO always coincides with the transition between the orthorhombic and the tetragonal low temperature structures. The CO transition evolves from a sharp drop at low x to a more gradual transition at higher x, eventually falling below the structural phase boundary for optimum doping. With respect to the interlayer CO correlations, we find no qualitative change of the stripe stacking order as a function of doping, and in-plane and out-of-plane correlations disappear simultaneously at the transition. Similarly to the CO, the spin stripe order (SO) is also most pronounced at x=1/8. Truly static SO sets in below the CO and coincides with the first appearance of in-plane superconducting correlations at temperatures significantly above the bulk transition to superconductivity (SC). Indications that bulk SC causes a reduction of the spin or charge stripe order could not be identified. We argue that CO is the dominant order that is compatible with SC pairing but competes with SC phase coherence. Comparing our results with data from the literature, we find good agreement if all results are plotted as a function of x instead of the nominal x, where x represents an estimate of the actual Ba content, extracted from the doping dependence of the structural transition between the orthorhombic phase and the tetragonal high-temperature phase.
We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in $rm La_{2-x}Ba_xCuO_4 (x approx 1/8)$, for which the superconducting $T_c$ is greatly suppressed. Strong superlattice reflections corresponding to static ordering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring $rm CuO_2$ planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at $sim 230AA$, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.
The effect of a magnetic field on the charge stripe order in La(2-x)Ba(x)CuO(4) has been studied by means of high energy (100 keV) x-ray diffraction for charge carrier concentrations ranging from strongly underdoped to optimally doped. We find that charge stripe order can be significantly enhanced by a magnetic field applied along the c-axis, but only at temperatures and dopings where it coexists with bulk superconductivity at zero field. The field also increases stripe correlations between the planes, which can result in an enhanced frustration of the interlayer Josephson coupling. Close to the famous x=1/8 compound, where zero field stripe order is pronounced and bulk superconductivity is suppressed, charge stripe order is independent of a magnetic field. The results imply that static stripe order and three-dimensionally coherent superconductivity are competing ground states.