The emergence of the Haldane Chern insulator state due to strong short range repulsive interactions in the half-filled fermionic spinless honeycomb lattice model has been proposed and challenged with different methods and yet it still remains controversial. In this work we revisit the problem using the infinite density matrix renormalization group method and report numerical evidence supporting i) the absence of the Chern insulator state, ii) two previously unnoticed charge ordered phases and iii) the existence and stability of all the non-topological competing orders that were found previously within mean field. In addition, we discuss the nature of the corresponding phase transitions based on our numerical data. Our work establishes the phase diagram of the half-filled honeycomb lattice model tilting the balance towards the absence of a Chern insulator phase for this model.
Tight binding models like the Hubbard Hamiltonian are most often explored in the context of uniform intersite hopping $t$. The electron-electron interactions, if sufficiently large compared to this translationally invariant $t$, can give rise to ordered magnetic phases and Mott insulator transitions, especially at commensurate filling. The more complex situation of non-uniform $t$ has been studied within a number of situations, perhaps most prominently in multi-band geometries where there is a natural distinction of hopping between orbitals of different degree of overlap. In this paper we explore related questions arising from the interplay of multiple kinetic energy scales and electron-phonon interactions. Specifically, we use Determinant Quantum Monte Carlo (DQMC) to solve the half-filled Holstein Hamiltonian on a `decorated honeycomb lattice, consisting of hexagons with internal hopping $t$ coupled together by $t^{,prime}$. This modulation of the hopping introduces a gap in the Dirac spectrum and affects the nature of the topological phases. We determine the range of $t/t^{,prime}$ values which support a charge density wave (CDW) phase about the Dirac point of uniform hopping $t=t^{,prime}$, as well as the critical transition temperature $T_c$. The QMC simulations are compared with the results of Mean Field Theory (MFT).
Driving a quantum system periodically in time can profoundly alter its long-time correlations and give rise to exotic quantum states of matter. The complexity of the combination of many-body correlations and dynamic manipulations has the potential to uncover a whole field of new phenomena, but the theoretical and numerical understanding becomes extremely difficult. We now propose a promising numerical method by generalizing the density matrix renormalization group to a superposition of Fourier components of periodically driven many-body systems using Floquet theory. With this method we can study the full time-dependent quantum solution in a large parameter range for all evolution times, beyond the commonly used high-frequency approximations. Numerical results are presented for the isotropic Heisenberg antiferromagnetic spin-1/2 chain under both local(edge) and global driving for spin-spin correlations and temporal fluctuations. As the frequency is lowered, we demonstrate that more and more Fourier components become relevant and determine strong length- and frequency-dependent changes of the quantum correlations that cannot be described by effective static models.
We investigate the effect of the Coulomb interaction, $U_{cf}$, between the conduction and f electrons in the periodic Anderson model using the density-matrix renormalization-group algorithm. We calculate the excitation spectrum of the half-filled symmetric model with an emphasis on the spin and charge excitations. In the one-dimensional version of the model it is found that the spin gap is smaller than the charge gap below a certain value of $U_{cf}$ and the reversed inequality is valid for stronger $U_{cf}$. This behavior is also verified by the behavior of the spin and density correlation functions. We also perform a quantum information analysis of the model and determine the entanglement map of the f and conduction electrons. It is revealed that for a certain $U_{cf}$ the ground state is dominated by the configuration in which the conduction and f electrons are strongly entangled, and the ground state is almost a product state. For larger $U_{cf}$ the sites are occupied alternatingly dominantly by two f electrons or by two conduction electrons.
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correlator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG at the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y-junctions, systems with three arms of $n$ sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to $N = 3n + 1 approx 500$ sites are studied with antiferromagnetic (AF) Heisenberg exchange $J$ between nearest-neighbor spins $S$ or electron transfer $t$ between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with $N_A e N_B$. The ground state (GS) and spin densities $ rho_r = <S^z_r >$ at site $r$ are quite different for junctions with $S$ = 1/2, 1, 3/2 and 2. The GS has finite total spin $S_G = 2S (S)$ for even (odd) $N$ and for $M_G =S_G$ in the $S_G$ spin manifold, $rho_r > 0 (< 0)$ at sites of the larger (smaller) sublattice. $S$ = 1/2 junctions have delocalized states and decreasing spin densities with increasing $N$. $S$ = 1 junctions have four localized $S_z = 1/2$ states at the end of each arm and centered on the junction, consistent with localized states in $S$ = 1 chains with finite Haldane gap. The GS of $S$ = 3/2 or 2 junctions of up to 500 spins is a spin density wave (SDW) with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in $S$ = 1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in $S$ = 3/2 or 2 junctions.
Johannes Motruk
,Adolfo G. Grushin
,Fernando de Juan
.
(2015)
.
"Interaction driven phases in the half-filled honeycomb lattice: an infinite density matrix renormalization group study"
.
Johannes Motruk
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا