Do you want to publish a course? Click here

Weak-Light, Zero to -pi Lossless Kerr-Phase Gate in Quantum-well System via Tunneling Interference Effect

601   0   0.0 ( 0 )
 Added by Chengjie Zhu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine a Kerr phase gate in a semiconductor quantum well structure based on the tunnelling interference effect. We show that there exist a specific signal field detuning, at which the absorption/amplification of the probe field will be eliminated with the increase of the tunnelling interference. Simultaneously, the probe field will acquire a -pi phase shift at the exit of the medium. We demonstrate with numerical simulations that a complete 180^circ phase rotation for the probe field at the exit of the medium is achieved, which may result in many applications in information science and telecommunication.



rate research

Read More

Distinguishing between strings of data or waveforms is at the core of multiple applications in information technologies. In a quantum language the task is to design protocols to differentiate quantum states. Quantum-based technologies promises to go beyond the capabilities offered by technologies based on classical principles. However the implementation of the logical gates that are the core of these systems is challenging since they should overcome quantum decoherence, low probability of success and are prone to errors. One unexpected contribution of considering ideas in the quantum world is to inspire similar solutions in the classical world (quantum-inspired technologies), protocols that aim at mimicking particular features of quantum algorithms. This is based on features of quantum physics also shared by waves in the classical world, such it is the case of interference or entanglement between degrees of freedom of a single particle. Here we demonstrate in a proof-of-concept experiment a new type of quantum-inspired protocol based on the idea of quantum fingerprinting (Phys. Rev. Lett. 87, 167902, 2001). Information is encoded on optical beams with orbital angular momentum (OAM). These beams allow to implement a crucial element of our system, a new type of Fredkin gate or polarization-controlled SWAP operation that exchange data between OAM beams. The protocols can evaluate the similarity between pairs of waveforms and strings of bits and quarts without unveiling the information content of the data.
We make a systematic theoretical analysis on the quantum interference (QI) effects in various fast-light media (including gain-assisted $N$, gain-assisted ladder-I, and gain-assisted ladder-II atomic systems). We show that such fast-light media are capable of not only completely eliminating the absorption but also suppressing the gain of signal field, and hence provide the possibility to realize a stable propagation of the signal field with a superluminal velocity. We find that there is a destructive (constructive) QI effect in gain-assisted ladder-I (gain-assisted N) system, but no QI in the gain-assisted ladder-II system; furthermore, a crossover from destructive (constructive) QI to Autler-Townes splitting may occur for the gain-assisted ladder-I (gain-assisted N) system when the control field of the system is modulated. Our theoretical analysis can be applied to other multi-level systems, and the results obtained may have promising applications in optical and quantum information processing and transmission.
120 - X. Q. Luo , D. L. Wang , H. Fan 2012
We present a realization of two-qubit controlled-phase gate, based on the linear and nonlinear properties of the probe and signal optical pulses in an asymmetric GaAs/AlGaAs double quantum wells. It is shown that, in the presence of cross-phase modulation, a giant cross-Kerr nonlinearity and mutually matched group velocities of the probe and signal optical pulses can be achieved while realizing the suppression of linear and self-Kerr optical absorption synchronously. These characteristics serve to exhibit an all-optical two-qubit controlled-phase gate within efficiently controllable photon-photon entanglement by semiconductor mediation. In addition, by using just polarizing beam splitters and half-wave plates, we propose a practical experimental scheme to discriminate the maximally entangled polarization state of two-qubit through distinguishing two out of the four Bell states. This proposal potentially enables the realization of solid states mediated all-optical quantum computation and information processing.
We propose a new two--qubit phase gate for ultra--cold atoms confined in an experimentally realized tilted double--well optical lattice [Sebby--Strabley et al., Phys. Rev. A {bf 73} 033605 (2006)]. Such a lattice is capable of confining pairs of atoms in a two--dimensional array of double--well potentials where control can be exercised over the barrier height and the energy difference of the minima of the two wells (known as the ``tilt). The four lowest single--particle motional states consist of two pairs of motional states in which each pair is localized on one side of the central barrier, allowing for two atoms confined in such a lattice to be spatially separated qubits. We present a time--dependent scheme to manipulate the tilt to induce tunneling oscillations which produce a collisional phase gate. Numerical simulations demonstrate that this gate can be performed with high fidelity.
141 - Miaodi Guo 2021
We analyze a scheme for controlling coherent photon absorption by cavity electromagnetically induced transparency (EIT) in a three-level atom-cavity system. Coherent perfect absorption (CPA) can occur when time-reversed symmetry of lasing process is obtained and destructive interference happens at the cavity interfaces. Generally, the frequency range of CPA is dependent on the decay rates of cavity mirrors. When the control laser is settled, the smaller cavity decay rate causes the wider frequency range of CPA, and the input intensity is larger to satisfy CPA condition for a given frequency. While the cavity parameters are determined, Rabi frequency of the control laser has little effect on the frequency range of CPA. However, with EIT-type quantum interference, the CPA mode is tunable by the control laser. This means the CPA with given frequency and intensity of an input laser can be manipulated as the coherent non-perfect absorption (CNPA). Moreover, with the relative phase of input probe lasers, the probe fields can be perfectly transmitted and/or reflected. Therefore, the system can be used as a controllable coherent perfect absorber or transmitter and/or reflector, and our work may have practical applications in optical logic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا