Do you want to publish a course? Click here

Probing the nature of Dark Matter with the SKA

104   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dark Matter (DM) is a fundamental ingredient of our Universe and of structure formation, and yet its nature is elusive to astrophysical probes. Information on the nature and physical properties of the WIMP (neutralino) DM (the leading candidate for a cosmologically relevant DM) can be obtained by studying the astrophysical signals of their annihilation/decay. Among the various e.m. signals, secondary electrons produced by neutralino annihilation generate synchrotron emission in the magnetized atmosphere of galaxy clusters and galaxies which could be observed as a diffuse radio emission (halo or haze) centered on the DM halo. A deep search for DM radio emission with SKA in local dwarf galaxies, galaxy regions with low star formation and galaxy clusters (with offset DM-baryonic distribution, like e.g. the Bullet cluster) can be very effective in constraining the neutralino mass, composition and annihilation cross-section. For the case of a dwarf galaxy, like e.g. Draco, the constraints on the DM annihilation cross-section obtainable with SKA1-MID will be at least a factor $sim 10^3$ more stringent than the limits obtained by Fermi-LAT in the $gamma$-rays. These limits scale with the value of the B field, and the SKA will have the capability to determine simultaneously both the magnetic field in the DM-dominated structures and the DM particle properties. The optimal frequency band for detecting the DM-induced radio emission is around $sim 1$ GHz, with the SKA1-MID Band 1 and 4 important to probe the synchrotron spectral curvature at low-$ u$ (sensitive to DM composition) and at high-$ u$ (sensitive to DM mass).



rate research

Read More

A key prediction of the standard cosmological model -- which relies on the assumption that dark matter is cold, i.e. non-relativistic at the epoch of structure formation -- is the existence of a large number of dark matter substructures on sub-galactic scales. This assumption can be tested by studying the perturbations induced by dark matter substructures on cold stellar streams. Here, we study the prospects for discriminating cold from warm dark matter by generating mock data for upcoming astronomical surveys such as the Large Synoptic Survey Telescope (LSST), and reconstructing the properties of the dark matter particle from the perturbations induced on the stellar density profile of a stream. We discuss the statistical and systematic uncertainties, and show that the method should allow to set stringent constraints on the mass of thermal dark matter relics, and possibly to yield an actual measurement of the dark matter particle mass if it is in the $mathcal{O}(1)$ keV range.
Astrophysical and cosmological observations currently provide the only robust, empirical measurements of dark matter. Future observations with Large Synoptic Survey Telescope (LSST) will provide necessary guidance for the experimental dark matter program. This white paper represents a community effort to summarize the science case for studying the fundamental physics of dark matter with LSST. We discuss how LSST will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational couplings to the Standard Model, and compact object abundances. Additionally, we discuss the ways that LSST will complement other experiments to strengthen our understanding of the fundamental characteristics of dark matter. More information on the LSST dark matter effort can be found at https://lsstdarkmatter.github.io/ .
The James Webb Space Telescope (JWST) will revolutionise our understanding of early galaxy formation, and could potentially set stringent constraints on the nature of dark matter. We use a semi-empirical model of galaxy formation to investigate the extent to which uncertainties in the implementation of baryonic physics may be degenerate with the predictions of two different models of dark matter -- Cold Dark Matter (CDM) and a 7 keV sterile neutrino, which behaves as Warm Dark Matter (WDM). Our models are calibrated to the observed UV luminosity function at $z=4$ using two separate dust attenuation prescriptions, which manifest as high and low star formation efficiency in low mass haloes. We find that while at fixed star formation efficiency, $varepsilon$, there are marked differences in the abundance of faint galaxies in the two dark matter models at high-$z$, these differences are mimicked easily by varying $varepsilon$ in the same dark matter model. We find that a high $varepsilon$ WDM and a low $varepsilon$ CDM model -- which provide equally good fits to the $z=4$ UV luminosity function -- exhibit nearly identical evolution in the cosmic stellar mass and star formation rate densities. We show that differences in the star formation rate at fixed stellar mass are larger for variations in $varepsilon$ in a given dark matter model than they are between dark matter models; however, the scatter in star formation rates is larger between the two models than they are when varying $varepsilon$. Our results suggest that JWST will likely be more informative in constraining baryonic processes operating in high-$z$ galaxies than it will be in constraining the nature of dark matter.
We present a comprehensive search for the 3.5 keV line, using $sim$51 Ms of archival Chandra observations peering through the Milky Ways Dark Matter Halo from across the entirety of the sky, gathered via the Chandra Source Catalog Release 2.0. We consider the datas radial distribution, organizing observations into four data subsets based on angular distance from the Galactic Center. All data is modeled using both background-subtracted and background-modeled approaches to account for the particle instrument background, demonstrating statistical limitations of the currently-available $sim$1 Ms of particle background data. A non-detection is reported in the total data set, allowing us to set an upper-limit on 3.5 keV line flux and constrain the sterile neutrino dark matter mixing angle. The upper-limit on sin$^2$(2$theta$) is $2.58 times 10^{-11}$ (though systematic uncertainty may increase this by a factor of $sim$2), corresponding to the upper-limit on 3.5 keV line flux of $2.34 times 10^{-7}$ ph s$^{-1}$ cm$^{-2}$. These limits show consistency with recent constraints and several prior detections. Non-detections are reported in all radial data subsets, allowing us to constrain the spatial profile of 3.5 keV line intensity, which does not conclusively differ from Navarro-Frenk-White predictions. Thus, while offering heavy constraints, we do not entirely rule out the sterile neutrino dark matter scenario or the more general decaying dark matter hypothesis for the 3.5 keV line. We have also used the non-detection of any unidentified emission lines across our continuum to further constrain the sterile neutrino parameter space.
Deep observations of galaxies reveal faint extended stellar components (hereafter ESCs) of streams, shells, and halos. These are a natural prediction of hierarchical galaxy formation, as accreted satellite galaxies are tidally disrupted by their host. We investigate whether or not global properties of the ESC could be used to test of dark matter, reasoning that they should be sensitive to the abundance of low-mass satellites, and therefore the underlying dark matter model. Using cosmological simulations of galaxy formation in the favoured Cold Dark Matter (CDM) and Warm Dark Matter (WDM) models ($m_{rm WDM}$=0.5,1,2 keV/$c^2$), which suppress the abundance of low-mass satellites, we find that the kinematics and orbital structure of the ESC is consistent across models. However, we find striking differences in its spatial structure, as anticipated -- a factor of $sim$10 drop in spherically averaged mass density between $sim$10% and $sim$75% of the virial radius in the more extreme WDM runs ($m_{rm WDM}$=0.5, 1 keV/$c^2$) relative to the CDM run. These differences are consistent with the mass assembly histories of the different components, and are present across redshifts. However, even the least discrepant of the WDM models is incompatible with current observational limits on $m_{rm WDM}$. Importantly, the differences we observe when varying the underlying dark matter are comparable to the galaxy-to-galaxy variation we expect within a fixed dark matter model. This suggests that it will be challenging to place limits on dark matter using only the unresolved spatial structure of the the ESC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا