No Arabic abstract
We study the problem of wave transport in a one-dimensional disordered system, where the scatterers of the chain are $n$ barriers and wells with statistically independent intensities and with a spatial extension $l_c$ which may contain an arbitrary number $delta/2pi$ of wavelengths, where $delta = k l_c$. We analyze the average Landauer resistance and transmission coefficient of the chain as a function of $n$ and the phase parameter $delta$. For weak scatterers, we find: i) a regime, to be called I, associated with an exponential behavior of the resistance with $n$, ii) a regime, to be called II, for $delta$ in the vicinity of $pi$, where the system is almost transparent and less localized, and iii) right in the middle of regime II, for $delta$ very close to $pi$, the formation of a band gap, which becomes ever more conspicuous as $n$ increases. In regime II, both the average Landauer resistance and the transmission coefficient show an oscillatory behavior with $n$ and $delta$. These characteristics of the system are found analytically, some of them exactly and some others approximately. The agreement between theory and simulations is excellent, which suggests a strong motivation for the experimental study of these systems. We also present a qualitative discussion of the results.
We study anomalous transport arising in disordered one-dimensional spin chains, specifically focusing on the subdiffusive transport typically found in a phase preceding the many-body localization transition. Different types of transport can be distinguished by the scaling of the average resistance with the systems length. We address the following question: what is the distribution of resistance over different disorder realizations, and how does it differ between transport types? In particular, an often evoked so-called Griffiths picture, that aims to explain slow transport as being due to rare regions of high disorder, would predict that the diverging resistivity is due to fat power-law tails in the resistance distribution. Studying many-particle systems with and without interactions we do not find any clear signs of fat tails. The data is compatible with distributions that decay faster than any power law required by the fat tails scenario. Among the distributions compatible with the data, a simple additivity argument suggests a Gaussian distribution for a fractional power of the resistance.
In the conventional theory of hopping transport the positions of localized electronic states are assumed to be fixed, and thermal fluctuations of atoms enter the theory only through the notion of phonons. On the other hand, in 1D and 2D lattices, where fluctuations prevent formation of long-range order, the motion of atoms has the character of the large scale diffusion. In this case the picture of static localized sites may be inadequate. We argue that for a certain range of parameters, hopping of charge carriers among localization sites in a network of 1D chains is a much slower process than diffusion of the sites themselves. Then the carriers move through the network transported along the chains by mobile localization sites jumping occasionally between the chains. This mechanism may result in temperature independent mobility and frequency dependence similar to that for conventional hopping.
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to surprising localization properties. We show that in one-dimensional systems almost all eigenstates (except for a few states close to the ground state) are power-law localized for any value of $a>0$. Moreover, we show that our model is an example of a new universality class of models with power-law hopping, characterized by a duality between systems with long-range hops ($a<1$) and short-range hops ($a>1$) in which the wave function amplitude falls off algebraically with the same power $gamma$ from the localization center.
The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system has been considered instead. It is found, that in the limit, where the Rashba length is large compared to the typical hopping length, the spin dynamics of a disordered system can still be described by the expressions derived for an ordered system, under the provision that one takes into account the frequency dependence of the diffusion constant and the mobility (which are determined by charge transport and are independent of spin). With these results we are able to make explicit the influence of disorder on spin related quantities as, e.g., the spin life-time in hopping systems.
We consider the problem of electron transport across a quasi-one-dimensional disordered multiply-scattering medium, and study the statistical properties of the electron density inside the system. In the physical setup that we contemplate, electrons of a given energy feed the disordered conductor from one end. The physical quantity that is mainly considered is the logarithm of the electron density, $ln {cal W}(x)$, since its statistical properties exhibit a self-averaging behavior. We also describe a {em gedanken} experiment, as a possible setup to measure the electron density. We study analytically and through computer simulations the ballistic, diffusive and localized regimes. We generally find a good agreement between the two approaches. The extension of the techniques that were used in the past to find information outside the sample is done in terms of the scattering properties of the two segments that form the entire conductor on each side of the observation point. The problem is of interest in various other branches of physics, as electrodynamics and elasticity.