Do you want to publish a course? Click here

Probing the Solar Wind Acceleration Region with the Sun--Grazing Comet C/2002 S2

75   0   0.0 ( 0 )
 Added by Silvio Giordano PhD
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Comet C/2002 S2, a member of the Kreutz family of Sungrazing comets, was discovered in white light images of the SOHO/LASCO coronagraph on 2002 September 18 and observed in hi, lya, emission by the SOHO/UVCS instrument at four different heights as it approached the Sun. The hi, lya, line profiles detected by UVCS are analyzed to determine the spectral parameters: line intensity, width and Doppler shift with respect to the coronal background. Two dimensional comet images of these parameters are reconstructed at the different heights. A novel aspect of the observations of this sungrazing comet data is that, whereas the emission from the most of the tail is blue--shifted, that along one edge of the tail is red--shifted. We attribute these shifts to a combination of solar wind speed and interaction with the magnetic field. In order to use the comet to probe the density, temperature and speed of the corona and solar wind through which it passes, as well as to determine the outgassing rate of the comet, we develop a Monte Carlo simulation of the hi, lya, emission of a comet moving through a coronal plasma. From the outgassing rate, we estimate a nucleus diameter of about 9 meters. This rate steadily increases as the comet approaches the Sun while the optical brightness decreases by more than a factor of ten and suddenly recovers. This indicates that the optical brightness is determined by the lifetimes of the grains, sodium atoms and molecules produced by the comet.



rate research

Read More

The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSPs fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfvenicity, and a 1/f break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4{deg} from the HCS, suggesting ~8{deg} as the full-width of the streamer belt wind at these distances. While the majority of the Alfvenic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Measurements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we use photospheric magnetic field maps observed over the past four solar cycles to estimate what fraction of magnetic open solar flux is rooted in active regions, a proxy for the fraction of all solar wind originating in active regions. We find that the fractional contribution of active regions to the solar wind varies between 30% to 80% at any one time during solar maximum and is negligible at solar minimum, showing a strong correlation with sunspot number. While active regions are typically confined to latitudes $pm$30$^{circ}$ in the corona, the solar wind they produce can reach latitudes up to $pm$60$^{circ}$. Their fractional contribution to the solar wind also correlates with coronal mass ejection rate, and is highly variable, changing by $pm$20% on monthly timescales within individual solar maxima. We speculate that these variations could be driven by coronal mass ejections causing reconfigurations of the coronal magnetic field on sub-monthly timescales.
Fast (>700 km/s) and slow (~400 km/s) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknown. Here we identify possible sites of origin using a slow solar wind source map of the entire Sun, which we construct from specially designed, full- disk observations from the Hinode satellite, and a magnetic field model. Our map provides a full-Sun observation that combines three key ingredients for identifying the sources: velocity, plasma composition and magnetic topology and shows them as solar wind composition plasma outflowing on open magnetic field lines. The area coverage of the identified sources is large enough that the sum of their mass contributions can explain a significant fraction of the mass loss rate of the solar wind.
Solar flare accelerated electron beams propagating away from the Sun can interact with the turbulent interplanetary media, producing plasma waves and type III radio emission. These electron beams are detected near the Earth with a double power-law energy spectrum. We simulate electron beam propagation from the Sun to the Earth in the weak turbulent regime taking into account the self-consistent generation of plasma waves and subsequent wave interaction with density fluctuations from low frequency MHD turbulence. The rate at which plasma waves are induced by an unstable electron beam is reduced by background density fluctuations, most acutely when fluctuations have large amplitudes or small wavelengths. This suppression of plasma waves alters the wave distribution which changes the electron beam transport. Assuming a 5/3 Kolmogorov-type power density spectrum of fluctuations often observed near the Earth, we investigate the corresponding energy spectrum of the electron beam after it has propagated 1 AU. We find a direct correlation between the spectrum of the double power-law below the break energy and the turbulent intensity of the background plasma. For an initial spectral index of 3.5, we find a range of spectra below the break energy between 1.6-2.1, with higher levels of turbulence corresponding to higher spectral indices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا