Do you want to publish a course? Click here

Linking 1D Stellar Evolution to 3D Hydrodynamical Simulations

160   0   0.0 ( 0 )
 Added by Andrea Cristini
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this contribution we present initial results of a study on convective boundary mixing (CBM) in massive stellar models using the GENEVA stellar evolution code. Before undertaking costly 3D hydrodynamic simulations, it is important to study the general properties of convective boundaries, such as the: composition jump; pressure gradient; and `stiffness. Models for a 15Mo star were computed. We found that for convective shells above the core, the lower (in radius or mass) boundaries are `stiffer according to the bulk Richardson number than the relative upper (Schwarzschild) boundaries. Thus, we expect reduced CBM at the lower boundaries in comparison to the upper. This has implications on flame front propagation and the onset of novae.



rate research

Read More

Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
In this study we present three-dimensional radiative cooling hydrodynamical simulations of galactic winds generated particularly in M82-like starburst galaxies. We have considered intermittent winds induced by SNe explosions within super star clusters randomly distributed in the central region of the galaxy and were able to reproduce the observed M82 wind conditions with its complex morphological outflow structure. We have found that the environmental conditions in the disk in nearly recent past are crucial to determine whether the wind will develop a large scale rich filamentary structure, as in M82 wind, or not. Also, the numerical evolution of the SN ejecta have allowed us to obtain the abundance distribution over the first 3 kpc extension of the wind and we have found that the SNe explosions change significantly the metallicity only of the hot, low-density wind component. Moreover, we have found that the SN-driven wind transports to outside the disk large amounts of energy, momentum and gas, but the more massive high-density component reaches only intermediate altitudes smaller than 1.5 kpc. Therefore, no significant amounts of gas mass are lost to the IGM and the mass evolution of the galaxy is not much affected by the starburst events occurring in the nuclear region.
The space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. We used a grid of these simulations computed with the CO$^5$BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above $ u_{rm max}$.
We explored the role of X-ray binaries composed by a black hole and a massive stellar companion (BHXs) as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects low metal-poor stars ($Z = [0,10^{-4}]$) as possible progenitors. The model that better reproduces observations assumes that a $sim 20%$ fraction of low-metallicity black holes are in binary systems which produce BHXs. These sources are estimated to deposit $sim 10^{52}$ erg of kinetic energy per event. With these parameters and in the simulated volume, we find that the energy injected by BHXs represents $sim 30%$ of the total energy released by SNII and BHX events at redshift $zsim7$ and then decreases rapidly as baryons get chemically enriched. Haloes with virial masses smaller than $sim 10^{10} ,M_{odot}$ (or $T_{rm vir} lesssim 10^5 $ K) are the most directly affected ones by BHX feedback. These haloes host galaxies with stellar masses in the range $10^7 - 10^8$ M$_odot$. Our results show that BHX feedback is able to keep the interstellar medium warm, without removing a significant gas fraction, in agreement with previous analytical calculations. Consequently, the stellar-to-dark matter mass ratio is better reproduced at high redshift. Our model also predicts a stronger evolution of the number of galaxies as a function of the stellar mass with redshift when BHX feedback is considered. These findings support previous claims that the BHXs could be an effective source of feedback in early stages of galaxy evolution.
The well-observed acoustic halo is an enhancement in time-averaged Doppler velocity and intensity power with respect to quiet-sun values which is prominent for weak and highly inclined field around the penumbra of sunspots and active regions. We perform 3D linear wave modelling with realistic distributed acoustic sources in a MHS sunspot atmosphere and compare the resultant simulation enhancements with multi-height SDO observations of the phenomenon. We find that simulated halos are in good qualitative agreement with observations. We also provide further proof that the underlying process responsible for the halo is the refraction and return of fast magnetic waves which have undergone mode conversion at the critical $a=c$ atmospheric layer. In addition, we also find strong evidence that fast-Alfven mode conversion plays a significant role in the structure of the halo, taking energy away from photospheric and chromospheric heights in the form of field-aligned Alfven waves. This conversion process may explain the observed dual-ring halo structure at higher ($> 8 $ mHz) frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا