Do you want to publish a course? Click here

LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

271   0   0.0 ( 0 )
 Added by Andre Rubbia
 Publication date 2014
  fields Physics
and research's language is English
 Authors L. Agostino




Ask ChatGPT about the research

In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6times 6times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable to 20 kton or 50~kton. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI.



rate research

Read More

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space.
One of the main goals of the Long Baseline Neutrino Oscillation experiment (LBNO) experiment is to study the L/E behaviour of the electron neutrino appearance probability in order to determine the unknown phase $delta_{CP}$. In the standard neutrino 3-flavour mixing paradigm, this parameter encapsulates a possibility of a CP violation in the lepton sector that in turn could help explain the matter-antimatter asymmetry in the universe. In LBNO, the measurement of $delta_{CP}$ would rely on the observation of the electron appearance probability in a broad energy range covering the 1$^{st}$ and 2$^{nd}$ maxima of the oscillation probability. An optimization of the energy spectrum of the neutrino beam is necessary to find the best coverage of the neutrino energies of interest. This in general is a complex task that requires exploring a large parameter space describing hadron target and beamline focusing elements. In this paper we will present a numerical approach of finding a solution to this difficult optimization problem often encountered in design of modern neutrino beamlines and we will show the improved LBNO sensitivity to the presence of the leptonic CP violation attained after the neutrino beam optimization.
143 - R. Acciarri 2015
A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyhasalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least $3sigma$ for 50% of the true values of $delta_{CP}$ with a 20 kton detector. With a far detector of 70 kton, the combination allows a $3sigma$ sensitivity for 75% of the true values of $delta_{CP}$ after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within todays state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.
This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا