Do you want to publish a course? Click here

Infrared spectra and photometry of complete samples of PG and 2MASS quasars

104   0   0.0 ( 0 )
 Added by Yong Shi
 Publication date 2014
  fields Physics
and research's language is English
 Authors Yong Shi




Ask ChatGPT about the research

As a step toward a comprehensive overview of the infrared diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 {mu}m) and photometric (24, 70 and 160 {mu}m) measurements of all Palomar-Green (PG) quasars at z < 0.5 and 2MASS quasars at z < 0.3. We supplement these data with Herschel measurements at 160 {mu}m. The sample is composed of 87 optically selected PG quasars and 52 near-IR selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 {mu}m) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the SED shape of ~ 0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured - silicate emission) and 2MASS (obscured - silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 {mu}m, possibly indicating effects on grain properties near the AGN. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.



rate research

Read More

132 - Song Wang 2014
We present 2MASS $JHK_{rm s}$ photometry for 913 star clusters and candidates in the field of M31, which are selected from the latest Revised Bologna Catalog of M31 globular clusters (GCs) and candidates. The photometric measurements in this paper supplement this catalog, and provide a most comprehensive and homogeneous photometric catalog for M31 GCs in the $JHK_{rm s}$ bandpasses. In general, our photometry is consistent with previous measurements. The globular cluster luminosity function (GCLF) peaks for the confirmed GCs derived by fitting a $t_5$ distribution using maximum likelihood method are: $J_0 = 15.348_{-0.208}^{+0.206}$, $H_0 = 14.703_{-0.180}^{+0.176}$, and ${K_{rm s}}_0 = 14.534_{-0.146}^{+0.142}$, all of which agree well with previous studies. The GCLFs are different between metal-rich (MR) and metal-poor (MP), inner and outer subpopulations, as that MP clusters are fainter than their MR counterparts, and the inner clusters are brighter than the outer ones, which confirm previous results. The NIR colors of the GC candidates are on average redder than those of the confirmed GCs, which lead to an obscure bimodal distribution of the color indices. The relation of $(V-K_{rm s})_0$ and metallicity shows a notable departure from linearity, with a shallower slope towards the redder end. The color-magnitude diagram (CMD) and color-color diagram show that many GC candidates are located out of the evolutionary tracks, suggesting that some of them may be false M31 GC candidates. The CMD also shows that the initial mass function of M31 GCs covers a large range, and the majority of the clusters have initial masses between $10^3$ and $10^6$ $M_{odot}$.
81 - Wei-Hao Bian 2015
A spectral principal component analysis (SPCA) of a sample of 87 PG QSOs at $z < 0.5$ is presented for their mid-infrared spectra from Spitzer Space Telescope. We have derived the first five eigenspectra, which account for 85.2% of the mid-infrared spectral variation. It is found that the first eigenspectrum represents the mid-infrared slope, forbidden emission line strength and $9.7~mu m$ silicate feature, the 3rd and 4th eigenspectra represent the silicate features at $18~ mu m$ and $9.7~mu m$, respectively. With the principal components (PC) from optical PCA, we find that there is a medium strong correlation between spectral SPC1 and PC2 (accretion rate). It suggests that more nuclear contribution to the near-IR spectrum leads to the change of mid-IR slope. We find mid-IR forbidden lines are suppressed with higher accretion rate. A medium strong correlation between SPC3 and PC1 (Eddington ratio) suggests a connection between the silicate feature at $18~mu m$ and the Eddington ratio. For the ratio of the silicate strength at 9.7 $mu m$ to that at 18 $mu m$, we find a strong correlation with PC2 (accretion rate or QSO luminosity). We also find that there is a medium strong correlation between the star formation rate (SFR) and PC2. It implies a correlation between star formation rate and the central accretion rate in PG QSOs.
Spitzer Infrared Spectrograph (IRS) observations of 3C radio galaxies and quasars shed new light on the nature of the central engines of AGN. Emission from silicate dust obscuring the central engine can be used to estimate the bolometric luminosity of an AGN. Emission lines from ions such as O IV and Ne V give another indication of the presence or lack of a hidden source of far-UV photons in the nucleus. Radio-loud AGN with relative-to-Eddington luminosity ratios of L/L_Edd < 3E-3 do not appear to have broad optical emission lines, though some do have strong silicate emission. Aromatic emission features from star formation activity are common in low-luminosity radio galaxies. Strong molecular hydrogen pure-rotational emission lines are also seen in some mid-IR weak radio galaxies, caused by either merger shocks or jet shocks in the interstellar medium.
We present deep near-infrared photometry and spectroscopy of the globular cluster 2MASS-GC03 projected in the Galactic disk using MMIRS on the Clay telescope (Las Campanas Observatory) and VISTA Variables in the Via Lactea survey (VVV) data. Most probable cluster member candidates were identified from near-infrared photometry. Out of ten candidates that were followed-up spectroscopically, five have properties of cluster members, from which we calculate <[Fe/H]> = -0.9 +- 0.2 and a radial velocity of v_r > = -78 +- 12km/s. A distance of 10.8kpc is estimated from 3 likely RRLyrae members. Given that the cluster is currently at a distance of 4.2kpc from the Galactic center, the clusters long survival time of an estimated 11.3 +- 1.2Gyr strengthens the case for its globular-cluster nature. The cluster has a hint of elongation in the direction of the Galactic center.
We present Herschel far-infrared (FIR) observations of two sub-mm bright quasars at high redshift: SDSS J1148+5251 (z=6.42) and BR 1202-0725 (z=4.69) obtained with the PACS instrument. Both objects are detected in the PACS photometric bands. The Herschel measurements provide additional data points that constrain the FIR spectral energy distributions (SEDs) of both sources, and they emphasise a broad range of dust temperatures in these objects. For lambda_rest ~< 20mu, the two SEDs are very similar to the average SEDs of quasars at low redshift. In the FIR, however, both quasars show excess emission compared to low-z QSO templates, most likely from cold dust powered by vigorous star formation in the QSO host galaxies. For SDSS J1148+5251 we detect another object at 160mu with a distance of ~10 arcseconds from the QSO. Although no physical connection between the quasar and this object can be shown with the available data, it could potentially confuse low-resolution measurements, thus resulting in an overestimate of the FIR luminosity of the z=6.42 quasar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا