Do you want to publish a course? Click here

Beating Abbe diffraction limit in confocal microscopy via non-classical photon statistics

221   0   0.0 ( 0 )
 Added by Paolo Traina
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the non-classical photon statistics of single nitrogen-vacancy colour centres in diamond. By developing a general model of super-resolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility, in some cases, to resolve in principle arbitrarily close emitting centers.



rate research

Read More

97 - Hui Wang , Yu He , Yu-Huai Li 2016
Boson sampling is considered as a strong candidate to demonstrate the quantum computational supremacy over classical computers. However, previous proof-of-principle experiments suffered from small photon number and low sampling rates owing to the inefficiencies of the single-photon sources and multi-port optical interferometers. Here, we develop two central components for high-performance boson sampling: robust multi-photon interferometers with 0.99 transmission rate, and actively demultiplexed single-photon sources from a quantum-dot-micropillar with simultaneously high efficiency, purity and indistinguishability. We implement and validate 3-, 4-, and 5-photon boson sampling, and achieve sampling rates of 4.96 kHz, 151 Hz, and 4 Hz, respectively, which are over 24,000 times faster than the previous experiments, and over 220 times faster than obtaining one sample through calculating the matrices permanent using the first electronic computer (ENIAC) and transistorized computer (TRADIC) in the human history. Our architecture is feasible to be scaled up to larger number of photons and with higher rate to race against classical computers, and might provide experimental evidence against the Extended Church-Turing Thesis.
We demonstrate a new approach to classical fiber-fed spectroscopy. Our method is to use a photonic lantern that converts an arbitrary (e.g. incoherent) input beam into N diffraction-limited outputs. For the highest throughput, the number of outputs must be matched to the total number of unpolarized spatial modes on input. This approach has many advantages: (i) after the lantern, the instrument is constructed from commercial off the shelf components; (ii) the instrument is the minimum size and mass configuration at a fixed resolving power and spectral order (~shoebox sized in this case); (iii) the throughput is better than 60% (slit to detector, including detector QE of ~80%); (iv) the scattered light at the detector can be less than 0.1% (total power). Our first implementation operates over 1545-1555 nm (limited by the detector, a 640$times$512 array with 20$mu$m pitch) with a spectral resolution of 0.055nm (R~30,000) using a 1$times$7 (1 multi-mode input to 7 single-mode outputs) photonic lantern. This approach is a first step towards a fully integrated, multimode photonic microspectrograph.
We report a metrology scheme which measures magnetic susceptibility of an atomic spin ensemble along the $x$ and $z$ direction and produces parameter estimation with precision beating the standard quantum limit. The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameter $phi$ to be estimated is assumed as uniformly distributed between 0 and $2pi$. One estimation of $phi$ can be produced with every two magnetic susceptibility data measured along the two axis respectively, which has imprecision scaling $(1.43pm{}0.02)/N^{0.687pm0.003}$ with respect to the number N of atomic spins. The measurement scheme is easy to implement and thus one step towards practical application of quantum metrology.
Chandran et al. (SIAM J. Comput.14) formally introduced the cryptographic task of position verification, where they also showed that it cannot be achieved by classical protocols. In this work, we initiate the study of position verification protocols with classical verifiers. We identify that proofs of quantumness (and thus computational assumptions) are necessary for such position verification protocols. For the other direction, we adapt the proof of quantumness protocol by Brakerski et al. (FOCS18) to instantiate such a position verification protocol. As a result, we achieve classically verifiable position verification assuming the quantum hardness of Learning with Errors. Along the way, we develop the notion of 1-of-2 non-local soundness for the framework of 1-of-2 puzzles, first introduced by Radian and Sattath (AFT19), which can be viewed as a computational unclonability property. We show that 1-of-2 non-local soundness follows from the standard 2-of-2 soundness, which could be of independent interest.
We study the possibility of creating spatial patterns having subwavelength size by using the so-called dark states formed by the interaction between atoms and optical fields. These optical fields have a specified spatial distribution. Our experiments in Rb vapor display spatial patterns that are smaller than the length determined by the diffraction limit of the optical system used in the experiment. This approach may have applications to interference lithography and might be used in coherent Raman spectroscopy to create patterns with subwavelength spatial resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا