We introduce a class of critical states which are embedded in the continuum (CSC) of one-dimensional optical waveguide array with one non-Hermitian defect. These states are at the verge of being fractal and have real propagation constant. They emerge at a phase transition which is driven by the imaginary refractive index of the defect waveguide and it is accompanied by a mode segregation which reveals analogies with the Dicke super -radiance. Below this point the states are extended while above they evolve to exponentially localized modes. An addition of a background gain or loss can turn these localized states to bound states in the continuum.