We present a study of the equilibration process of nonequilibrium systems by means of molecular dynamics simulation technique. The nonequilibrium conditions are achieved in systems by defining velocity components of the constituent atoms randomly. The calculated Shannon en- tropy from the probability distribution of the kinetic energy among the atoms at different instants during the process of equilibration shows oscillation as the system relaxes towards equilibrium. Fourier transformations of these oscillating Shannon entropies reveal the existance of Debye frequency of the concerned system. From these studies it was concluded that the signature of the equilibration process of dynamical systems is the time invariance of Shannon entropy.