Do you want to publish a course? Click here

Disorder-induced subgap states and Majorana zero-energy edge modes in two-dimensional topological insulator-superconductor hybrid structures

325   0   0.0 ( 0 )
 Added by Hoi-Yin Hui
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we show that such a protection against disorder does not exist in realistic multi-channel TI/SC/ferromagnetic insulator (FI) sandwich structures of experimental relevance since the time-reversal symmetry is explicitly broken locally at the SC/FI interface where the end Majorana mode (MM) resides. We find that although the MM itself and the emph{bulk} topological superconducting phase inside the TI are indeed universally protected against disorder, disorder-induced subgap states are generically introduced at the TI edge due to the presence of the FI/SC interface as long as multiple edge channels are occupied. We discuss the implications of the finding for the detection and manipulation of the edge MM in realistic TI/SC/FI experimental systems of current interest.



rate research

Read More

Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the zero-energy Majorana mode in the topological superconducting phase as a function of temperature, tunnel barrier potential, and a magnetic field tilted from the direction of the wire for realistic wires of finite lengths. We find that higher temperatures and tunnel barriers as well as a large magnetic field in the direction transverse to the wire length could very strongly suppress the zero-bias conductance peak as observed in Ref.[1]. We also show that a strong magnetic field along the wire could eventually lead to the splitting of the zero bias peak into a doublet with the doublet energy splitting oscillating as a function of increasing magnetic field. Our results based on the standard theory of topological superconductivity in a semiconductor hybrid structure in the presence of proximity-induced superconductivity, spin-orbit coupling, and Zeeman splitting show that the recently reported experimental data are generally consistent with the existing theory that led to the predictions for the existence of the Majorana modes in the semiconductor hybrid structures in spite of some apparent anomalies in the experimental observations at first sight. We also make several concrete new predictions for future observations regarding Majorana splitting in finite wires used in the experiments.
We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to $3$~T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.
In this work, we demonstrate that making a cut (a narrow vacuum regime) in the bulk of a quantum anomalous Hall insulator (QAHI) creates a topologically protected single helical channel with counter-propagating electron modes, and inducing superconductivity on the helical channel through proximity effect will create Majorana zero energy modes (MZMs) at the ends of the cut. In this geometry, there is no need for the proximity gap to overcome the bulk insulating gap of the QAHI to create MZMs as in the two-dimensional QAHI/superconductor (QAHI/SC) heterostructures. Therefore, the topological regime with MZMs is greatly enlarged. Furthermore, due to the presence of a single helical channel, the generation of low energy in-gap bound states caused by multiple conducting channels is avoided such that the MZMs can be well separated from other in-gap excitations in energy. This simple but practical approach allows the creation of a large number of MZMs in devices with complicated geometry such as hexons for measurement-based topological quantum computation. We further demonstrate how braiding of MZMs can be performed by controlling the coupling strength between the counter-propagating electron modes.
85 - B. Pekerten , A. Teker , O. Bozat 2015
In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and opening of a transport gap can also cause topological transitions, even in the presence of nonzero density of states across the transition. Such transport gaps induced by disorder can change the topological index, driving a topologically trivial wire into a nontrivial state or vice versa. We focus on the Rashba spin-orbit coupled semiconductor nanowires in proximity to a conventional superconductor, which is an experimentally relevant system, and obtain analytical formulas for topological transitions in these wires, valid for generic realizations of disorder. Full tight-binding simulations show excellent agreement with our analytical results without any fitting parameters.
Among the major approaches that are being pursued for realizing quantum bits, the Majorana-based platform has been the most recent to be launched. It attempts to realize qubits which store quantum information in a topologically-protected manner. The quantum information is protected by its nonlocal storage in localized and well-separated Majorana zero modes, and manipulated by exploiting their nonabelian quantum exchange properties. Realizing these topological qubits is experimentally challenging, requiring superconductivity, helical electrons (created by spin-orbit coupling) and breaking of time reversal symmetry to all cooperate in an uncomfortable alliance. Over the past decade, several candidate material systems for realizing Majorana-based topological qubits have been explored, and there is accumulating, though still debated, evidence that zero modes are indeed being realized. This paper reviews the basic physical principles on which these approaches are based, the material systems that are being developed, and the current state of the field. We highlight both the progress made and the challenges that still need to be overcome.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا