Type Ia Supernovae from Merging White Dwarfs I. Prompt Detonations


Abstract in English

Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such peri-merger detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase. Synthetic light curves and spectra are generated for comparison with observations. Three models are considered with primary masses 0.96 Msun, 1.06 Msun, and 1.20 Msun. Of these, the 0.96 Msun dwarf merging with an 0.81 Msun companion, with a Ni56 yield of 0.58 Msun, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to super-Chandrasekhar mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of 2 with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. Despite the large variation with viewing angle, the set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B-band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.

Download