Do you want to publish a course? Click here

An Enhanced Features Extractor for a Portfolio of Constraint Solvers

156   0   0.0 ( 0 )
 Added by Roberto Amadini
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques.



rate research

Read More

*** To appear in Theory and Practice of Logic Programming (TPLP) *** Within the context of constraint solving, a portfolio approach allows one to exploit the synergy between different solvers in order to create a globally better solver. In this paper we present SUNNY: a simple and flexible algorithm that takes advantage of a portfolio of constraint solvers in order to compute --- without learning an explicit model --- a schedule of them for solving a given Constraint Satisfaction Problem (CSP). Motivated by the performance reached by SUNNY vs. different simulations of other state of the art approaches, we developed sunny-csp, an effective portfolio solver that exploits the underlying SUNNY algorithm in order to solve a given CSP. Empirical tests conducted on exhaustive benchmarks of MiniZinc models show that the actual performance of SUNNY conforms to the predictions. This is encouraging both for improving the power of CSP portfolio solvers and for trying to export them to fields such as Answer Set Programming and Constraint Logic Programming.
67 - Guy Uziel , Ran El-Yaniv 2016
We present a novel online ensemble learning strategy for portfolio selection. The new strategy controls and exploits any set of commission-oblivious portfolio selection algorithms. The strategy handles transaction costs using a novel commission avoidance mechanism. We prove a logarithmic regret bound for our strategy with respect to optimal mixtures of the base algorithms. Numerical examples validate the viability of our method and show significant improvement over the state-of-the-art.
Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how frequently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k=3,4,5,6.
There have been recent efforts for incorporating Graph Neural Network models for learning full-stack solvers for constraint satisfaction problems (CSP) and particularly Boolean satisfiability (SAT). Despite the unique representational power of these neural embedding models, it is not clear how the search strategy in the learned models actually works. On the other hand, by fixing the search strategy (e.g. greedy search), we would effectively deprive the neural models of learning better strategies than those given. In this paper, we propose a generic neural framework for learning CSP solvers that can be described in terms of probabilistic inference and yet learn search strategies beyond greedy search. Our framework is based on the idea of propagation, decimation and prediction (and hence the name PDP) in graphical models, and can be trained directly toward solving CSP in a fully unsupervised manner via energy minimization, as shown in the paper. Our experimental results demonstrate the effectiveness of our framework for SAT solving compared to both neural and the state-of-the-art baselines.
*** To appear in IJCAI 2015 proceedings *** In Constraint Programming (CP), a portfolio solver uses a variety of different solvers for solving a given Constraint Satisfaction / Optimization Problem. In this paper we introduce sunny-cp2: the first parallel CP portfolio solver that enables a dynamic, cooperative, and simultaneous execution of its solvers in a multicore setting. It incorporates state-of-the-art solvers, providing also a usable and configurable framework. Empirical results are very promising. sunny-cp2 can even outperform the performance of the oracle solver which always selects the best solver of the portfolio for a given problem.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا