SHARDS: stellar populations and star formation histories of a mass-selected sample of 0.65<z<1.1 galaxies


Abstract in English

We report on results from the analysis of a stellar mass-selected (log M*>9.0) sample of 1644 galaxies at 0.65<z<1.1 with ultra-deep (m<26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Angstrom spectral break [Dn(4000), an excellent age indicator for the stellar populations of quiescent galaxies] for all galaxies at z~0.9 down to log M*9. The Dn(4000) index cannot be resolved from broad-band photometry, and measurements from optical spectroscopic surveys are typically limited to galaxies at least x10 more massive. When combined with the rest-frame U-V colour, Dn(4000) provides a powerful diagnostic of the extinction affecting the stellar population that is relatively insensitive to degeneracies with age, metallicity or star formation history. We use this novel approach to estimate de-reddened colours and light-weighted stellar ages for individual sources. We explore the relationships linking stellar mass, (U-V), and Dn(4000) for the sources in the sample, and compare them to those found in local galaxies. The main results are: a) both Dn(4000) and (U-V) correlate with M*. The dispersion in Dn(4000) values at a given M* increases with M*, while the dispersion for (U-V) decreases due to the higher average extinction prevalent in massive star-forming galaxies. b) for massive galaxies, we find a smooth transition between the blue cloud and red sequence in the intrinsic U-V colour, in contrast with other recent results. c) at a fixed stellar age, we find a positive correlation between extinction and stellar mass. d) the fraction of sources with declining or halted star formation increases steeply with the stellar mass, from ~5% at log M*~9.0-9.5 to ~80% at log M*>11, in agreement with downsizing scenarios.

Download