Do you want to publish a course? Click here

SHARDS: stellar populations and star formation histories of a mass-selected sample of 0.65<z<1.1 galaxies

96   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on results from the analysis of a stellar mass-selected (log M*>9.0) sample of 1644 galaxies at 0.65<z<1.1 with ultra-deep (m<26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Angstrom spectral break [Dn(4000), an excellent age indicator for the stellar populations of quiescent galaxies] for all galaxies at z~0.9 down to log M*9. The Dn(4000) index cannot be resolved from broad-band photometry, and measurements from optical spectroscopic surveys are typically limited to galaxies at least x10 more massive. When combined with the rest-frame U-V colour, Dn(4000) provides a powerful diagnostic of the extinction affecting the stellar population that is relatively insensitive to degeneracies with age, metallicity or star formation history. We use this novel approach to estimate de-reddened colours and light-weighted stellar ages for individual sources. We explore the relationships linking stellar mass, (U-V), and Dn(4000) for the sources in the sample, and compare them to those found in local galaxies. The main results are: a) both Dn(4000) and (U-V) correlate with M*. The dispersion in Dn(4000) values at a given M* increases with M*, while the dispersion for (U-V) decreases due to the higher average extinction prevalent in massive star-forming galaxies. b) for massive galaxies, we find a smooth transition between the blue cloud and red sequence in the intrinsic U-V colour, in contrast with other recent results. c) at a fixed stellar age, we find a positive correlation between extinction and stellar mass. d) the fraction of sources with declining or halted star formation increases steeply with the stellar mass, from ~5% at log M*~9.0-9.5 to ~80% at log M*>11, in agreement with downsizing scenarios.



rate research

Read More

We present the results of a photometric redshift analysis designed to identify z>6 galaxies from the near-IR HST imaging in three deep fields (HUDF, HUDF09-2 & ERS). By adopting a rigorous set of criteria for rejecting low-z interlopers, and by employing a deconfusion technique to allow the available IRAC imaging to be included in the candidate selection process, we have derived a robust sample of 70 Lyman-break galaxies (LBGs) spanning the redshift range 6.0<z<8.7. Based on our final sample we investigate the distribution of UV spectral slopes (beta), finding a variance-weighted mean value of <beta>=-2.05 +/- 0.09 which, contrary to some previous results, is not significantly bluer than displayed by lower-redshift starburst galaxies. We confirm the correlation between UV luminosity and stellar mass reported elsewhere, but based on fitting galaxy templates featuring a range of star-formation histories, metallicities and reddening we find that, at z>=6, the range in mass-to-light ratio (M*/L_UV) at a given UV luminosity could span a factor of ~50. Focusing on a sub-sample of twenty-one candidates with IRAC detections at 3.6-microns we find that L* LBGs at z~6.5 have a median stellar mass of M* = (2.1 +/- 1.1) x 10^9 Msun and a median specific star-formation rate of 1.9 +/- 0.8 Gyr^-1. Using the same sub-sample we have investigated the influence of nebular continuum and line emission, finding that for the majority of candidates (16 out of 21) the best-fitting stellar-mass estimates are reduced by less than a factor of 2.5. Finally, a detailed comparison of our final sample with the results of previous studies suggests that, at faint magnitudes, several high-redshift galaxy samples in the literature are significantly contaminated by low-redshift interlopers (abridged).
144 - James Schombert 2013
The luminosities, colors and Halpha emission for 429 HII regions in 54 LSB galaxies are presented. While the number of HII regions per galaxy is lower in LSB galaxies compared to star-forming irregulars and spirals, there is no indication that the size or luminosity function of HII regions differs from other galaxy types. The lower number of HII regions per galaxy is consistent with their lower total star formation rates. The fraction of total $L_{Halpha}$ contributed by HII regions varies from 10 to 90% in LSB galaxies (the rest of the H$alpha$ emission being associated with a diffuse component) with no correlation with galaxy stellar or gas mass. Bright HII regions have bluer colors, similar to the trend in spirals; their number and luminosities are consistent with the hypothesis that they are produced by the same HII luminosity function as spirals. Comparison with stellar population models indicates that the brightest HII regions in LSB galaxies range in cluster mass from a few $10^3 M_{sun}$ (e.g., $rho$ Oph) to globular cluster sized systems (e.g., 30 Dor) and that their ages are consistent with clusters from 2 to 15 Myrs old. The faintest HII regions are comparable to those in the LMC powered by a single O or B star. Thus, star formation in LSB galaxies covers the full range of stellar cluster mass.
124 - James Schombert 2014
A series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low H$alpha$ emission and high gas fractions that indicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into the Spitzer wavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S$^4$G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.
We compare multi-wavelength SFR indicators out to z~3 in GOODS-South. Our analysis uniquely combines U-to-8um photometry from FIREWORKS, MIPS 24um and PACS 70, 100, and 160um photometry from the PEP survey, and Ha spectroscopy from the SINS survey. We describe a set of
We study the environmental dependence of stellar population properties at z ~ 1.3. We derive galaxy properties (stellar masses, ages and star formation histories) for samples of massive, red, passive early-type galaxies in two high-redshift clusters, RXJ0849+4452 and RXJ0848+4453 (with redshifts of z = 1.26 and 1.27, respectively), and compare them with those measured for the RDCS1252.9-2927 cluster at z=1.24 and with those measured for a similarly mass-selected sample of field contemporaries drawn from the GOODS-South Field. Robust estimates of the aforementioned parameters have been obtained by comparing a large grid of composite stellar population models with extensive 8-10 band photometric coverage, from the rest-frame far-ultraviolet to the infrared. We find no variations of the overall stellar population properties among the different samples of cluster early-type galaxies. However, when comparing cluster versus field stellar population properties we find that, even if the (star formation weighted) ages are similar and depend only on galaxy mass, the ones in the field do employ longer timescales to assemble their final mass. We find that, approximately 1 Gyr after the onset of star formation, the majority (75%) of cluster galaxies have already assembled most (> 80%) of their final mass, while, by the same time, fewer (35%) field ETGs have. Thus we conclude that while galaxy mass regulates the timing of galaxy formation, the environment regulates the timescale of their star formation histories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا