Do you want to publish a course? Click here

Discovery of 47-s pulsations in the X-ray source 1RXS J225352.8+624354

109   0   0.0 ( 0 )
 Added by Paolo Esposito Dr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of pulsations at a period of ~47 s in the persistent X-ray source 1RXS J225352.8+624354 (1RXS J2253) using five Chandra observations performed in 2009. The signal was also detected in Swift and ROSAT data, allowing us to infer over a 16-yr baseline an average, long-term period increasing rate of ~17 ms per year and therefore to confirm the signal as the spin period of an accreting, spinning-down neutron star. The pulse profile of 1RXS J2253 (~50-60% pulsed fraction) is complex and energy independent (within the statistical uncertainties). The 1-10 keV Chandra spectra are well fit by an absorbed power-law model with photon index ~1.4 and observed flux of (2-5)e-12 erg cm^-2 s^-1. The source was also detected by INTEGRAL in the 17-60 keV band at a persistent flux of ~6e-12 erg cm^-2 s^-1, implying a spectral cut off around 15 keV. We also carried out optical spectroscopic follow-up observations of the 2MASS counterpart at the Nordic Optical Telescope. This made it possible to first classify the companion of 1RXS J2253 as a B0-1III-Ve (most likely a B1Ve) star at a distance of about 4-5 kpc (favouring an association with the Perseus arm of the Galaxy). The latter finding implies an X-ray luminosity of ~3e34 erg s^-1, suggesting that 1RXS J2253 is a new member of the sub-class of low-luminosity long-orbital-period persistent Be/X-ray pulsars in a wide and circular orbit (such as X Persei).



rate research

Read More

We report the discovery with XMM-Newton of 3-s X-ray pulsations from 3XMM J004232.1+411314, a dipping source that dominates the hard X-ray emission of M31. This finding unambiguously assesses the neutron star (NS) nature of the compact object. We also measured an orbital modulation of 4.15 h and a projected semi-axis at $a_{mathrm{X}} sin i= 0.6$ lt-s, which implies a low-mass companion of about 0.2$-$0.3$M_{odot}$ assuming a NS of 1.5 $M_{odot}$ and an orbital inclination $i=70^{circ}-80^{circ}$. The barycentric orbit-corrected pulse period decreased by $sim$28 ms in about 16 yr, corresponding to an average spin-up rate of $dot{P} sim -6 times 10^{-11}$ s s$^{-1}$ ; pulse period variations, probably caused to by X-ray luminosity changes, were observed on shorter time scales. We identify two possible scenarios for the source: a mildly magnetic NS with $B_{mathrm{p}}simeq$ few $times10^{10}$ G if the pulsar is far from its equilibrium period $P_{mathrm{eq}}$, and a relatively young highly magnetic NS with $B_{mathrm{eq}}simeq 10^{13}$ G if spinning close to $P_{mathrm{eq}}$.
We report the detection of weak pulsations from the archetypal ultraluminous X-ray source (ULX) NGC 1313 X-2. Acceleration searches reveal sinusoidal pulsations in segments of two out of six new deep observations of this object, with a period of $sim$ 1.5 s and a pulsed fraction of $sim$ 5%. We use Monte Carlo simulations to demonstrate that the individual detections are unlikely to originate in false Poisson noise detections given their very close frequencies; their strong similarity to other pulsations detected from ULXs also argues they are real. The presence of a large bubble nebula surrounding NGC 1313 X-2 implies an age of order 1 Myr for the accreting phase of the ULX, which implies that the neutron stars magnetic field has not been suppressed over time by accreted material, nor has the neutron star collapsed into a black hole, despite an average energy output into the nebula two orders of magnitude above Eddington. This argues that most of the accreted material has been expelled over the lifetime of the ULX, favouring physical models including strong winds and/or jets for neutron star ULXs.
141 - F. Fuerst 2016
We report the detection of coherent pulsations from the ultraluminous X-ray source NGC 7793 P13. The ~0.42s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (>>5 sigma) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star with an observed peak luminosity of ~1e40 erg/s (assuming isotropy), well above the Eddington limit for a 1.4 M_sun accretor. This makes P13 the second ultraluminous X-ray source known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin up over the 2013-2016 period. This spin-up indicates a magnetic field of B ~ 1.5e12 G, typical of many accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming, however this is difficult to reconcile with the sinusoidal pulse profile.
94 - S. Zane , F. Haberl , G.L. Israel 2010
We report on a multi-wavelength study of the compact object candidate 1RXS J141256.0+792204 (Calvera). Calvera was observed in the X-rays with XMM/EPIC twice for a total exposure time of ~50 ks. The source spectrum is thermal and well reproduced by a two component model composed of either two hydrogen atmosphere models, or two blackbodies (kT_1~ 55/150 eV, kT_2~ 80/250 eV, respectively, as measured at infinity). Evidence was found for an absorption feature at ~0.65 keV; no power-law high-energy tail is statistically required. Using pn and MOS data we discovered pulsations in the X-ray emission at a period P=59.2 ms. The detection is highly significant (> 11 sigma), and unambiguously confirms the neutron star nature of Calvera. The pulse profile is nearly sinusoidal, with a pulsed fraction of ~18%. We looked for the timing signature of Calvera in the Fermi Large Area Telescope (LAT) database and found a significant (~5 sigma) pulsed signal at a period coincident with the X-ray value. The gamma-ray timing analysis yielded a tight upper limit on the period derivative, dP/dt < 5E-18 s/s (dE_rot/dt <1E33 erg/s, B<5E10 G for magneto- dipolar spin-down). Radio searches at 1.36 GHz with the 100-m Effelsberg radio telescope yielded negative results, with a deep upper limit on the pulsed flux of 0.05 mJy. Diffuse, soft (< 1 keV) X-ray emission about 13 west of the Calvera position is present both in our pointed observations and in archive ROSAT all-sky survey images, but is unlikely associated with the X-ray pulsar. Its spectrum is compatible with an old supernova remnant (SNR); no evidence for diffuse emission in the radio and optical bands was found. The most likely interpretations are that Calvera is either a central compact object escaped from a SNR or a mildly recycled pulsar; in both cases the source would be the first ever member of the class detected at gamma-ray energies.
195 - P. Reig 2014
We report on the discovery of X-ray pulsations in the Be/X-ray binary IGR J21343+4738 during an XMM-Newton observation. We obtained a barycentric corrected pulse period of 320.35+-0.06 seconds. The pulse profile displays a peak at low energy that flattens at high energy. The pulse fraction is 45+-3$% and independent of energy within the statistical uncertainties. The 0.2-12 keV spectrum is well fit by a two component model consisting of a blackbody with kT=0.11+-0.01 keV and a power law with photon index Gamma=1.02+-0.07. Both components are affected by photoelectric absorption with a equivalent hydrogen column density NH=(1.08+-0.15)x 10^{22} cm^{-2} The observed unabsorbed flux is 1.4x10^{-11} erg cm^{-2} s^{-1} in the 0.2-12 keV energy band. Despite the fact that the Be stars circumstellar disc has almost vanished, accretion continues to be the main source of high energy radiation. We argue that the observed X-ray luminosity (LX~10^{35} erg s^{-1}) may result from accretion via a low-velocity equatorial wind from the optical companion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا