Terahertz (THz) radiation has uses from security to medicine; however, sensitive room-temperature detection of THz is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism: photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here we demonstrate a graphene thermoelectric THz photodetector with sensitivity exceeding 10 V/W (700 V/W) at room temperature and noise equivalent power less than 1100 pW/Hz^1/2 (20 pW/Hz^1/2), referenced to the incident (absorbed) power. This implies a performance which is competitive with the best room-temperature THz detectors for an optimally coupled device, while time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.