Do you want to publish a course? Click here

Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications

178   0   0.0 ( 0 )
 Added by Oscar Iglesias
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.



rate research

Read More

We report on self-assembled iron oxide nanoparticle films on silicon substrates. In addition to homogeneously assembled layers, we fabricated patterned trenches of 40-1000 nm width using electron beam lithography for the investigation of assisted self-assembly. The nanoparticles with a diameter of 20 nm +/- 7% were synthesized by thermal decomposition of iron oleate complexes in trioctylamine in presence of oleic acid. Samples with different track widths and nanoparticle concentration were characterized by scanning electron microscopy and by superconducting quantum interference device magnetometry.
Magnetic nanoparticle based hyperthermia emerged as a potential tool for treating malignant tumours. The efficiency of the method relies on the knowledge of magnetic properties of the samples; in particular, knowledge of the frequency dependent complex magnetic susceptibility is vital to optimize the irradiation conditions and to provide feedback for material science developments. We study the frequency-dependent magnetic susceptibility of an aqueous ferrite suspension for the first time using non-resonant and resonant radiofrequency reflectometry. We identify the optimal measurement conditions using a standard solenoid coil, which is capable of providing the complex magnetic susceptibility up to 150 MHz. The result matches those obtained from a radiofrequency resonator for a few discrete frequencies. The agreement between the two different methods validates our approach. Surprisingly, the dynamic magnetic susceptibility cannot be explained by an exponential magnetic relaxation behavior even when we consider a particle size-dependent distribution of the relaxation parameter.
The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We propose a new type of applied field, which is simultaneously rotating and alternating, i.e. the direction of the rotating external field changes periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental realization in cancer therapy which requires the enhancement of loss energies.
We report about a combined structural and magnetometric characterization of self-assembled magnetic nanoparticle arrays. Monodisperse iron oxide nanoparticles with a diameter of 20 nm were synthesized by thermal decomposition. The nanoparticle suspension was spin-coated on Si substrates to achieve self-organized arrays of particles and subsequently annealed at various conditions. The samples were characterized by x-ray diffraction, bright and dark field high resolution transmission electron microscopy (HRTEM). The structural analysis is compared to the magnetic behavior investigated by superconducting interference device (SQUID) magnetometry. We can identify either multi-phase FeO/g-Fe2O3 or multi-phase FeO/Fe3O4 nanoparticles. The FeO/g-Fe2O3 system shows a pronounced exchange bias effect which explains the peculiar magnetization data obtained for this system.
We have calculated the low-field magnetic susceptibility $chi$ of a system consisting of non-interacting mono-dispersed nanoparticles using a classical statistical approach. The model makes use of the assumption that the axes of symmetry of all nanoparticles are aligned and oriented at a certain angle $psi$ with respect to the external magnetic field. An analytical expression for the temperature dependence of the susceptibility $chi(T)$ above the blocking temperature is obtained. The derived expression is a generalization of the Curie law for the case of anisotropic magnetic particles. We show that the normalized susceptibility is a universal function of the ratio of the temperature over the anisotropy constant for each angle $psi$. In the case that the easy-axis is perpendicular to the magnetic field the susceptibility has a maximum. The temperature of the maximum allows one to determine the anisotropy energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا