Do you want to publish a course? Click here

A Monotonicity Formula and a Liouville-type Theorem for a Fourth Order Supercritical Problem

160   0   0.0 ( 0 )
 Added by Juncheng Wei
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We consider Liouville-type and partial regularity results for the nonlinear fourth-order problem $$ Delta^2 u=|u|^{p-1}u {in} R^n,$$ where $ p>1$ and $nge1$. We give a complete classification of stable and finite Morse index solutions (whether positive or sign changing), in the full exponent range. We also compute an upper bound of the Hausdorff dimension of the singular set of extremal solutions. Our approach is motivated by Flemings tangent cone analysis technique for minimal surfaces and Federers dimension reduction principle in partial regularity theory. A key tool is the monotonicity formula for biharmonic equations.



rate research

Read More

We prove that the Dirichlet problem for the Lane-Emden equation in a half-space has no positive solution which is monotone in the normal direction. As a consequence, this problem does not admit any positive classical solution which is bounded on finite strips. This question has a long history and our result solves a long-standing open problem. Such a nonexistence result was previously available only for bounded solutions, or under a restriction on the power in the nonlinearity. The result extends to general convex nonlinearities.
83 - Siran Li 2019
We give a soft proof of Albertis Luzin-type theorem in [1] (G. Alberti, A Lusintype theorem for gradients, J. Funct. Anal. 100 (1991)), using elementary geometric measure theory and topology. Applications to the $C^2$-rectifiability problem are also discussed.
161 - Li Ma , Yihong Du 2009
In this note, we study Liouville type theorem for conformal Gaussian curvature equation (also called the mean field equation) $$ -Delta u=K(x)e^u, in R^2 $$ where $K(x)$ is a smooth function on $R^2$. When $K(x)=K(x_1)$ is a sign-changing smooth function in the real line $R$, we have a non-existence result for the finite total curvature solutions. When $K$ is monotone non-decreasing along every ray starting at origin, we can prove a non-existence result too. We use moving plane method and moving sphere method.
261 - Na Wang , Zhibing Zhang 2021
In this note, we improved the Liouville type theorem for the Beltrami flows. Two different methods are used to prove it. One is the monotonicity method, and the other is proof by contradiction. The conditions that we proposed on Beltrami flows are significantly weaker than previously known conditions.
119 - XiuXiong Chen , Meijun Zhu 2007
In this paper we shall give an analytic proof of the fact that the Liouville energy on a topological two sphere is bounded from below. Our proof does not rely on the uniformization theorem and the Onofri inequality, thus it is essentially needed in the alternative proof of the uniformization theorem via the Calabi flow. Such an analytic approach also sheds light on how to obtain the boundedness for E_1 energy in the study of general Kahler manifolds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا