Do you want to publish a course? Click here

Diagnosing the time-dependence of active region core heating from the emission measure: II. Nanoflare trains

283   0   0.0 ( 0 )
 Added by Stephen Bradshaw
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The time-dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution cool-ward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a nanoflare train and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are: (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration $Delta_H$ to the post-train cooling and draining timescale $Delta_C$, where $Delta_H$ depends on the number of heating events, the event duration and the time interval between successive events ($tau_C$); (3) $tau_C$ may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating - the length and density of the heated structure must be measured for $Delta_H$ to be uniquely extracted from the ratio $Delta_H/Delta_C$.



rate research

Read More

Despite its prediction over two decades ago, the detection of faint, high-temperature (hot) emission due to nanoflare heating in non-flaring active region cores has proved challenging. Using an efficient two-fluid hydrodynamic model, this paper investigates the properties of the emission expected from repeating nanoflares (a nanoflare train) of varying frequency as well as the separate heating of electrons and ions. If the emission measure distribution ($mathrm{EM}(T)$) peaks at $T = T_m$, we find that $mathrm{EM}(T_m)$ is independent of details of the nanoflare train, and $mathrm{EM}(T)$ above and below $T_m$ reflects different aspects of the heating. Below $T_m$ the main influence is the relationship of the waiting time between successive nanoflares to the nanoflare energy. Above $T_m$ power-law nanoflare distributions lead to an extensive plasma population not present in a monoenergetic train. Furthermore, in some cases characteristic features are present in $mathrm{EM}(T)$. Such details may be detectable given adequate spectral resolution and a good knowledge of the relevant atomic physics. In the absence of such resolution we propose some metrics that can be used to infer the presence of hot plasma.
Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM$propto T^{2.4}$ from $log,T = 5.5$ up to a peak at $log,T = 6.55$. We show that the observations compare very favorably with a simple model of nanoflare-heated loop strands. They also appear to be consistent with more sophisticated nanoflare models. However, in the absence of additional constraints, steady heating is also a viable explanation.
315 - Durgesh Tripathi 2010
Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained Emission Measure EM$(T)$ distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely textit{static equilibrium}, textit{strong condensation} and textit{strong evaporation} from cite{ebtel}. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from $log T[mathrm{K}]=5.15 -6.3$. Using photospheric abundances we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the textit{strong condensation} case (EM$_{con}$), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3{-}5 MK) seen in the core of active regions are heated by nanoflares.
The nanoflare paradigm of coronal heating has proven extremely promising for explaining the presence of hot, multi-million degree loops in the solar corona. In this paradigm, localized heating events supply enough energy to heat the solar atmosphere to its observed temperatures. Rigorously modeling this process, however, has proven difficult, since it requires an accurate treatment of both the magnetic field dynamics and reconnection as well as the plasmas response to magnetic perturbations. In this paper, we combine fully 3D magnetohydrodynamic (MHD) simulations of coronal active region plasma driven by photospheric motions with spatially-averaged, time-dependent hydrodynamic (HD) modeling of coronal loops to obtain physically motivated observables that can be quantitatively compared with observational measurements of active region cores. We take the behavior of reconnected field lines from the MHD simulation and use them to populate the HD model to obtain the thermodynamic evolution of the plasma and subsequently the emission measure distribution. We find the that the photospheric driving of the MHD model produces only very low-frequency nanoflare heating which cannot account for the full range of active region core observations as measured by the low-temperature emission measure slope. Additionally, we calculate the spatial and temporal distributions of field lines exhibiting collective behavior, and argue that loops occur due to random energization occurring on clusters of adjacent field lines.
204 - S.Terzo , F.Reale , M.Miceli 2012
The heating of the solar corona is one of the big questions in astrophysics. Rapid pulses called nanoflares are among the best candidate mechanisms. The analysis of the time variability of coronal X-ray emission is potentially a very useful tool to detect impulsive events. We analyze the small-scale variability of a solar active region in a high cadence Hinode/XRT observation. The dataset allows us to detect very small deviations of emission fluctuations from the distribution expected for a constant rate. We discuss the deviations in the light of the pulsed-heating scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا