Do you want to publish a course? Click here

Observations of SN2011fe with INTEGRAL

411   0   0.0 ( 0 )
 Added by Jordi Isern
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

SN2011fe was detected by the Palomar Transient Factory on August 24th 2011 in M101 few hours after the explosion. From the early spectra it was immediately realized that it was a Type Ia supernova thus making this event the brightest one discovered in the last twenty years. In this paper the observations performed with the instruments on board of INTEGRAL (SPI, IBIS/ISGRI, JEM-X and OMC) before and after the maximum of the optical light as well as the interpretation in terms of the existing models of $gamma$--ray emission from such kind of supernovae are reported. All INTEGRAL high-energy have only been able to provide upper limits to the expected emission due to the decay of $^{56}$Ni. These bounds allow to reject explosions involving a massive white dwarf in the sub--Chandrasekhar scenario. On the other hand, the optical light curve obtained with the OMC camera suggests that the event was produced by a delayed detonation of a CO white dwarf that produced $sim 0.5$ M$odot$ of $^{56}$Ni. In this particular case, INTEGRAL would have only been able to detect the early $gamma$--ray emission if the supernova had occurred at a distance of 2 -3 Mpc, although the brightest event could be visible up to distances larger by a factor two.



rate research

Read More

231 - J. Isern , P. Jean , E. Bravo 2013
SN2011fe was detected by the Palomar Transient Factory on August 24th 2011 in M101 a few hours after the explosion. From the early optical spectra it was immediately realized that it was a Type Ia supernova thus making this event the brightest one discovered in the last twenty years. The distance of the event offered the rare opportunity to perform a detailed observation with the instruments on board of INTEGRAL to detect the gamma-ray emission expected from the decay chains of $^{56}$Ni. The observations were performed in two runs, one before and around the optical maximum, aimed to detect the early emission from the decay of $^{56}$Ni and another after this maximum aimed to detect the emission of $^{56}$Co. The observations performed with the instruments on board of INTEGRAL (SPI, IBIS/ISGRI, JEMX and OMC) have been analyzed and compared with the existing models of gamma-ray emission from such kind of supernovae. In this paper, the analysis of the gamma-ray emission has been restricted to the first epoch. Both, SPI and IBIS/ISGRI, only provide upper-limits to the expected emission due to the decay of $^{56}$Ni. These upper-limits on the gamma-ray flux are of 7.1 $times$ 10$^{-5}$ ph/s/cm$^2$ for the 158 keV line and of 2.3 $times$ 10$^{-4}$ ph/s/cm$^2$ for the 812 keV line. These bounds allow to reject at the $2sigma$ level explosions involving a massive white dwarf, $sim 1$ M$odot$ in the sub--Chandrasekhar scenario and specifically all models that would have substantial amounts of radioactive $^{56}$Ni in the outer layers of the exploding star responsible of the SN2011fe event. The optical light curve obtained with the OMC camera also suggests that SN2011fe was the outcome of the explosion, possibly a delayed detonation although other models are possible, of a CO white dwarf that synthesized $sim 0.55$ M$_odot$ of $^{56}$Ni. For this specific model.
129 - R. Landi , L. Bassani , A. Malizia 2009
The 4th IBIS/ISGRI survey lists 723 hard X-ray sources many still unidentified. We cross-correlated the list of the sources included in the 4th IBIS catalogue with the Swift/XRT data archive, finding a sample of 20 objects for which XRT data could help in the search for the X-ray and hence optical counterpart and/or in the study of the source spectral and variability properties below 10 keV. Four objects (IGR J00465-4005, LEDA 96373, IGR J1248.2-5828 and IGR J13107-5626) are confirmed or likely absorbed active galaxies, while two (IGR J14080-3023 and 1RXS J213944.3+595016) are unabsorbed AGN. We find three peculiar extragalactic objects, NGC 4728 being a Narrow Line Seyfert galaxy, MCG+04-26-006 a type 2 LINER and PKS 1143-693 probably a QSO; furthermore, our results indicate that IGR J08262+4051 and IGR J22234-4116 are candidate AGN, which require further optical spectroscopic follow-up observations to be fully classified. In the case of 1RXS J080114.6-462324 we are confident that the source is a Galactic object. For IGR J10447-6027, IGR J12123-5802 and IGR J20569+4940 we pinpoint one X-ray counterpart, although its nature could not be assessed despite spectral and sometimes variability information being obtained. Clearly, we need to perform optical follow-up observations in order to firmly assess their nature. There are five objects for which we find no obvious X-ray counterpart (IGR J07506-1547 and IGR J17008-6425) or even no detection (IGR J17331-2406, IGR J18134-1636 and IGR J18175-1530); apart from IGR J18134-1636, all these sources are found to be variable in the IBIS energy band, therefore it is difficult to catch them even in X-rays.
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.
We used data from the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) to set upper-limits on the ${gamma}$-ray and hard X-ray prompt emission associated with the gravitational wave event GW170104, discovered by the LIGO/Virgo collaboration. The unique omni-directional viewing capability of the instruments on-board INTEGRAL allowed us to examine the full 90% confidence level localization region of the LIGO trigger. Depending on the particular spectral model assumed and the specific position within this region, the upper limits inferred from the INTEGRAL observations range from F${gamma}$=1.9x10-7 erg cm-2 to F${gamma}$=10-6 erg cm-2 (75 keV - 2 MeV energy range). This translates into a ratio between the prompt energy released in ${gamma}$-rays along the direction to the observer and the gravitational wave energy of E${gamma}$/EGW <2.6x10-5 . Using the INTEGRAL results, we can not confirm the ${gamma}$-ray proposed counterpart to GW170104 by the AGILE team with the MCAL instrument. The reported flux of the AGILE/MCAL event, E2, is not compatible with the INTEGRAL upper limits within most of the 90% LIGO localization region. There is only a relatively limited portion of the sky where the sensitivity of the INTEGRAL instruments was not optimal and the lowest allowed fluence estimated for E2 would still be compatible with the INTEGRAL results. This region was also observed independently by Fermi/GBM and AstroSAT, from which, as far as we are aware, there are no reports of any significant detection of a prompt high-energy event.
During the first observing run of LIGO, two gravitational wave events and one lower-significance trigger (LVT151012) were reported by the LIGO/Virgo collaboration. At the time of LVT151012, the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) was pointing at a region of the sky coincident with the high localization probability area of the event and thus permitted us to search for its electromagnetic counterpart (both prompt and afterglow emission). The imaging instruments on-board INTEGRAL (IBIS/ISGRI, IBIS/PICsIT, SPI, and the two JEM-X modules) have been exploited to attempt the detection of any electromagnetic emission associated with LVT151012 over 3 decades in energy (from 3 keV to 8 MeV). The omni-directional instruments on-board the satellite, i.e. the SPI-ACS and IBIS monitored the entire LVT151012 localization region at energies above 75 keV. We did not find any significant transient source that was spatially and/or temporally coincident with LVT151012, obtaining tight upper limits on the associated hard X-ray and $gamma$-ray radiation. For typical spectral models, the upper limits on the fluence of the emission from any 1 s long-lasting counterpart of LVT151012 ranges from $F_{gamma}=$3.5$times$10$^{-8}$ erg cm$^{-2}$ (20 - 200 keV) to $F_{gamma}$=7.1$times$10$^{-7}$ erg cm$^{-2}$ (75 - 2000 keV), constraining the ratio of the isotropic equivalent energy released in the electromagnetic emission to the total energy of the gravitational waves: $E_{75-2000~keV}/E_{GW}<$4.4$times$10$^{-5}$. Finally, we provide an exhaustive summary of the capabilities of all instruments on-board INTEGRAL to hunt for $gamma$-ray counterparts of gravitational wave events, exploiting both serendipitous and pointed follow-up observations. This will serve as a reference for all future searches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا