Do you want to publish a course? Click here

Inverse cascade behavior in freely decaying two-dimensional fluid turbulence

347   0   0.0 ( 0 )
 Added by Pablo Mininni
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from an ensemble of 50 runs of two-dimensional hydrodynamic turbulence with spatial resolution of 2048^2 grid points, and from an ensemble of 10 runs with 4096^2 grid points. All runs in each ensemble have random initial conditions with same initial integral scale, energy, enstrophy, and Reynolds number. When both ensemble- and time-averaged, inverse energy cascade behavior is observed, even in the absence of external mechanical forcing: the energy spectrum at scales larger than the characteristic scale of the flow follows a k^(-5/3) law, with negative flux, together with a k^(-3) law at smaller scales, and a positive flux of enstrophy. The source of energy for this behavior comes from the modal energy around the energy containing scale at t=0. The results shed some light into connections between decaying and forced turbulence, and into recent controversies in experimental studies of two-dimensional and magnetohydrodynamic turbulent flows.



rate research

Read More

124 - Prasad Perlekar 2010
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter $Lambda$ to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier--Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent $theta=2.9pm0.2$.
554 - W.D. McComb , M.F. Linkmann 2014
The low wavenumber expansion of the energy spectrum takes the well known form: $ E(k,t) = E_2(t) k^2 + E_4(t) k^4 + ... $, where the coefficients are weighted integrals against the correlation function $C(r,t)$. We show that expressing $E(k,t)$ in terms of the longitudinal correlation function $f(r,t)$ immediately yields $E_2(t)=0$ by cancellation. We verify that the same result is obtained using the correlation function $C(r,t)$, provided only that $f(r,t)$ falls off faster than $r^{-3}$ at large values of $r$. As power-law forms are widely studied for the purpose of establishing bounds, we consider the family of model correlations $f(r,t)=alpha_n(t)r^{-n}$, for positive integer $n$, at large values of the separation $r$. We find that for the special case $n=3$, the relationship connecting $f(r,t)$ and $C(r,t)$ becomes indeterminate, and (exceptionally) $E_2 eq 0$, but that this solution is unphysical in that the viscous term in the K{a}rm{a}n-Howarth equation vanishes. Lastly, we show that $E_4(t)$ is independent of time, without needing to assume the exponential decrease of correlation functions at large distances.
We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient $C_{varepsilon}$ scales as $C_{varepsilon} sim Re_{M}^{m}/Re_{ell}^{n}$ with $mapprox 1 approx n$ ($Re_M$ and $Re_{ell}$ are global/inlet and local Reynolds numbers respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence (i.e. where $C_{varepsilon}approx mathrm{constant}$). These are the main terms of the inhomogeneous, anisotropic version of the von K{a}rm{a}n-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, $ell$, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium and the equilibrium decay regions, the peak of the scale-by-scale energy transfer scales as $(overline{u^2})^{3/2}/ell$ ($overline{u^2}$ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream equilibrium region where $C_{varepsilon} approx mathrm{constant}$ even though $Re_{ell}$ is lower.
151 - Eric Falcon 2020
We report on the observation of surface gravity wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity wave turbulence, an upscale transfer is observed, interpreted as the inverse cascade of weak turbulence theory. A steady state is achieved when the inverse cascade reaches a scale in between the forcing wavelength and the basin size, but far from the latter. This inverse cascade saturation, which depends on the wave steepness, is probably due to the emergence of nonlinear dissipative structures such as sharp-crested waves.
In this work, the scaling statistics of the dissipation along Lagrangian trajectories are investigated by using fluid tracer particles obtained from a high resolution direct numerical simulation with $Re_{lambda}=400$. Both the energy dissipation rate $epsilon$ and the local time averaged $epsilon_{tau}$ agree rather well with the lognormal distribution hypothesis. Several statistics are then examined. It is found that the autocorrelation function $rho(tau)$ of $ln(epsilon(t))$ and variance $sigma^2(tau)$ of $ln(epsilon_{tau}(t))$ obey a log-law with scaling exponent $beta=beta=0.30$ compatible with the intermittency parameter $mu=0.30$. The $q$th-order moment of $epsilon_{tau}$ has a clear power-law on the inertial range $10<tau/tau_{eta}<100$. The measured scaling exponent $K_L(q)$ agrees remarkably with $q-zeta_L(2q)$ where $zeta_L(2q)$ is the scaling exponent estimated using the Hilbert methodology. All these results suggest that the dissipation along Lagrangian trajectories could be modelled by a multiplicative cascade.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا