No Arabic abstract
We present a detailed study of the mechanism by which the INVERT method [Phys. Rev. Lett. 104, 125501] guides structure refinement of disordered materials. We present a number of different possible implementations of the central algorithm and explore the question of algorithm weighting. Our analysis includes quantification of the relative contributions of variance and fit-to-data terms during structure refinement, which leads us to study the roles of density fluctuations and configurational jamming in the RMC fitting process. We present a parametric study of the pair distribution function solution space for C60, a-Si and a-SiO2, which serves to highlight the difficulties faced in developing a transferable weighting scheme.
Precursor phenomena observed prior to the martensite phase transition plays a critical role towards the understanding of important technological properties of shape memory and magnetic shape memory alloys (MSMAs). The premartensite (PM) phase, considered as the precursor state of the martensite is proven to be a thermodynamically stable phase recently (Nature Commun. 8, 1006 (2017)), necessitates a critical investigation of precursor effects in these materials. We present here an evidence for the existence of a precursor state of the PM phase in Ni2MnGa MSMA using high energy synchrotron pair distribution function (PDF) study. The precursor state embedded within the austenite matrix in the short-range ordered (SRO) regime starting from far above the actual PM phase transition. The presence of such SRO precursor states of the PM phase produces strains which couple with the ferromagnetic (FM) order parameter around TC leading to first order character of the paramagnetic to FM phase transition.
Many crystalline materials show chemical short range order and relaxation of neighboring atoms. Local structural information can be obtained by analyzing the atomic pair distribution function (PDF) obtained from powder diffraction data. In this paper, we present the successful extraction of chemical short range order parameters from the x-ray PDF of a quenched Cu_3Au sample.
We introduce an approximation for the pair distribution function of the inhomogeneous hard sphere fluid. Our approximation makes use of our recently published averaged pair distribution function at contact which has been shown to accurately reproduce the averaged pair distribution function at contact for inhomogeneous density distributions. This approach achieves greater computational efficiency than previous approaches by enabling the use of exclusively fixed-kernel convolutions and thus allowing an implementation using fast Fourier transforms. We compare results for our pair distribution approximation with two previously published works and Monte-Carlo simulation, showing favorable results.
High resolution total and indium differential atomic pair distribution functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is resolved as a doublet due to the presence of two distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves only atomic pairs containing In, yields chemical specific information and helps ease the structure data interpretation. Both PDFs have been fit with structure models and the way in that the underlying cubic zinc-blende lattice of In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the distinct In-As and Ga-As bond lengths present has been quantified.
The wave function of a dilute hard sphere Bose gas at low temperatures is discussed, emphasizing the formation of pairs. The pair distribution function is calculated for two values of $sqrt{rho a^3}$.