Exponential rank and exponential length for Z-stable simple C*-algebras


Abstract in English

Let $A$ be a unital separable simple ${cal Z}$-stable C*-algebra which has rational tracial rank at most one and let $uin U_0(A),$ the connected component of the unitary group of $A.$ We show that, for any $epsilon>0,$ there exists a self-adjoint element $hin A$ such that $$ |u-exp(ih)|<epsilon. $$ The lower bound of $|h|$ could be as large as one wants. If $uin CU(A),$ the closure of the commutator subgroup of the unitary group, we prove that there exists a self-adjoint element $hin A$ such that $$ |u-exp(ih)| <epsilon and |h|le 2pi. $$ Examples are given that the bound $2pi$ for $|h|$ is the optimal in general. For the Jiang-Su algebra ${cal Z},$ we show that, if $uin U_0({cal Z})$ and $epsilon>0,$ there exists a real number $-pi<tle pi$ and a self-adjoint element $hin {cal Z}$ with $|h|le 2pi$ such that $$ |e^{it}u-exp(ih)|<epsilon. $$

Download