We study theoretically light propagations at the zigzag edge of a honeycomb photonic crystal consisting of dielectric rods in air, analogous to graphene. Within the photonic band gap of the honeycomb photonic crystal, a unimodal edge state may exist with a sharp confinement of optical fields. Its dispersion can be tuned simply by adjusting the radius of the edge rods. For the edge rods with a graded variation in radius along the edge direction, we show numerically that light beams of different frequencies can be trapped sharply in different spatial locations, rendering wideband trapping of light.