Do you want to publish a course? Click here

Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

221   0   0.0 ( 0 )
 Added by Junichiro Katsuta
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Centaurus B is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the gamma-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies, and analyze the extension and variability of the gamma-ray source in the LAT dataset, in which it appears as a steady gamma-ray emitter. The X-ray core of Centaurus B is detected as a bright source of a continuum radiation. We do not detect however any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and gamma-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed gamma-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed gamma-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. By means of synchrotron self-Compton modeling we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.



rate research

Read More

Centaurus B (Cen B) is one of the closest and brightest radio-loud galaxy in the southern sky. This radio galaxy, proposed as a plausible candidate for accelerating ultra-high-energy cosmic rays (UHECRs), is near the highest-energy neutrino event reported (IC35) in the High-Energy Starting Events catalog. Pierre Auger observatory reported the highest energy comic rays during 10 years of collecting data with some of them around this source. In this paper, the analysis of the gamma-ray spectrum and the light curve above 200 MeV is presented with nine years of cumulative Fermi-LAT data around Cen B. Taking into consideration the multi-wavelength observations carried out about this radio galaxy, leptonic and hadronic scenarios are introduced in order to fit the spectral energy distribution, assuming that the gamma-ray flux is produced in a region close to the core and in the extended lobes. Using the best-fit values found, several physics properties of this radio galaxy are derived. Furthermore, a statistical analysis of the cosmic ray distribution around Cen B is performed, finding that this distribution is not different from the background at a level of significance of 5%. Considering the UHECR event associated to this source by Moskalenko et al. and extrapolating its luminosity to low energies, we do not find enough evidence to associate the highest-energy neutrino event (IC35) with this radio galaxy.
We present gamma-ray observations with the LAT on board the Fermi Gamma-Ray Telescope of the nearby radio galaxy Centaurus~A. The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen~A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum ($G=2.67pm0.10_{stat}pm0.08_{sys}$ where the photon flux is $Phipropto E^{-G}$). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TANAMI) program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004-2008. The fit requires a low Doppler factor, in contrast to BL Lacs which generally require larger values to fit their broadband SEDs. This indicates the $g$-ray emission originates from a slower region than that from BL Lacs, consistent with previous modeling results from Cen~A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow.
166 - H. Akamatsu , M. Mizuno , N. Ota 2016
We present the results of deep 140 ks Suzaku X-ray observations of the north-east (NE) radio relic of the merging galaxy cluster Abell2255. The temperature structure of Abell2255 is measured out to 0.9 times the virial radius (1.9 Mpc) in the NE direction for the first time. The Suzaku temperature map of the central region suggests a complex temperature distribution, which agrees with previous work. Additionally, on a larger-scale, we confirm that the temperature drops from 6 keV around the cluster center to 3 keV at the outskirts, with two discontinuities at {it r}$sim$5arcmin~(450 kpc) and $sim$12arcmin~(1100 kpc) from the cluster center. Their locations coincide with surface brightness discontinuities marginally detected in the XMM-Newton image, which indicates the presence of shock structures. From the temperature drop, we estimate the Mach numbers to be ${cal M}_{rm inner}sim$1.2 and, ${cal M}_{rm outer}sim$1.4. The first structure is most likely related to the large cluster core region ($sim$350--430 kpc), and its Mach number is consistent with the XMM-Newton observation (${cal M}sim$1.24: Sakelliou & Ponman 2006). Our detection of the second temperature jump, based on the Suzaku key project observation, shows the presence of a shock structure across the NE radio relic. This indicates a connection between the shock structure and the relativistic electrons that generate radio emission. Across the NE radio relic, however, we find a significantly lower temperature ratio ($T_1/T_2sim1.44pm0.16$ corresponds to~${cal M}_{rm X-ray}sim1.4$) than the value expected from radio wavelengths, based on the standard diffusive shock acceleration mechanism ($T_1/T_2>$ 3.2 or ${cal M}_{rm Radio}>$ 2.8).
203 - Paola Grandi 2011
We review the high energy properties of Misaligned AGNs associated with gamma-ray sources detected by Fermi in 24 months of survey. Most of them are nearby emission low power radio galaxies (i.e FRIs) which probably have structured jets. On the contrary, high power radio sources (i.e FRIIs) with GeV emission are rare. The small number of FRIIs does not seem to be related to their higher redshifts. Assuming proportionality between the radio core flux and the gamma-ray flux, several of them are expected to be bright enough to be detected above 100 MeV in spite of their distance. We suggest that beaming/jet structural differences are responsible for the detection rate discrepancy observed between FRIs and FRIIs.
We report on the results of X-ray and radio follow-up observations of two GeV gamma-ray sources 2FGL J0923.5+1508 and 2FGL J1502.1+5548, selected as candidates for high-redshift blazars from unassociated sources in the {it Fermi} Large Area Telescope Second Source Catalog. We utilize the Suzaku satellite and the VLBI Exploration of Radio Astrometry (VERA) telescopes for X-ray and radio observations, respectively. For 2FGL J0923.5+1508, a possible radio counterpart NVSS J092357+150518 is found at 1.4 GHz from an existing catalog, but we do not detect any X-ray emission from it and derive a flux upper limit $F_{rm 2-8 keV} <$ 1.37 $times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$. Radio observations at 6.7 GHz also result in an upper limit of $S_{rm 6.7 GHz}$ $<$ 19 mJy, implying a steep radio spectrum that is not expected for a blazar. On the other hand, we detect X-rays from NVSS J150229+555204, the potential 1.4 GHz radio counterpart of 2FGL J1502.1+5548. The X-ray spectrum can be fitted with an absorbed power-law model with a photon index $gamma$=1.8$^{+0.3}_{-0.2}$ and the unabsorbed flux is $F_{rm 2-8 keV}$=4.3$^{+1.1}_{-1.0}$ $times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$. Moreover, we detect unresolved radio emission at 6.7 GHz with flux $S_{rm 6.7 GHz}$=30.1 mJy, indicating a compact, flat-spectrum radio source. If NVSS J150229+555204 is indeed associated with 2FGL J1502.1+5548, we find that its multiwavelength spectrum is consistent with a blazar at redshift $z sim 3-4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا