No Arabic abstract
Magnetization measurements have been performed on single-crystalline Fe$_{1.1}$Te in pulsed magnetic fields $mathbf{H}perpmathbf{c}$ up to 53 T and temperatures from 4.2 to 65 K. At $T=4.2$ K, a non-reversible reorientation of the antiferromagnetic moments is observed at $mu_0H_R=48$ T as the pulsed field is on the rise. No anomaly is observed at $H_R$ during the fall of the field and, as long as the temperature is unchanged, during both rises and falls of additional field pulses. The transition at $H_R$ is reactivated if the sample is warmed up above the N{e}el temperature $T_Nsimeq60$ K and cooled down again. The magnetic field-temperature phase diagram of Fe$_{1.1}$Te in $mathbf{H}perpmathbf{c}$ is also investigated. We present the temperature dependence of $H_R$, as well as that of the antiferromagnetic-to-paramagnetic borderline $H_c$ in temperatures above 40 K.
Fe$_{1+x}$Te is a two dimensional van der Waals antiferromagnet that becomes superconducting on anion substitution on the Te site. The parent phase of Fe$_{1+x}$Te is sensitive to the amount of interstitial iron situated between the iron-tellurium layers displaying collinear magnetic order coexisting with low temperature metallic resistivity for small concentrations of interstitial iron $x$ and helical magnetic order for large values of $x$. While this phase diagram has been established through scattering [see for example E. E. Rodriguez $textit{et al.}$ Phys. Rev. B ${bf{84}}$, 064403 (2011) and S. Rossler $textit{et al.}$ Phys. Rev. B ${bf{84}}$, 174506 (2011)], recent scanning tunnelling microscopy measurements [C. Trainer $textit{et al.}$ Sci. Adv. ${bf{5}}$, eaav3478 (2019)] have observed a different magnetic structure for small interstitial iron concentrations $x$ with a significant canting of the magnetic moments along the crystallographic $c$ axis of $theta$=28 $pm$ 3$^{circ}$. In this paper, we revisit the magnetic structure of Fe$_{1.09}$Te using spherical neutron polarimetry and scanning tunnelling microscopy to search for this canting in the bulk phase and compare surface and bulk magnetism. The results show that the bulk magnetic structure of Fe$_{1.09}$Te is consistent with collinear in-plane order ($theta=0$ with an error of $sim$ 5$^{circ}$). Comparison with scanning tunnelling microscopy on a series of Fe$_{1+x}$Te samples reveals that the surface exhibits a magnetic surface reconstruction with a canting angle of the spins of $theta=29.8^{circ}$. We suggest that this is a consequence of structural relaxation of the surface layer resulting in an out-of-plane magnetocrystalline anisotropy. The magnetism in Fe$_{1+x}$Te displays different properties at the surface when the symmetry constraints of the bulk are removed.
We report magnetization and magnetoresistivity measurements on the isostructural ferromagnetic superconductors UCoGe and URhGe in magnetic fields up to 60 T and temperatures from 1.5 to 80 K. At low-temperature, a moment polarization in UCoGe in a field $mu_0mathbf{H}parallelmathbf{b}$ of around 50 T leads to well-defined anomalies in both magnetization and magnetoresistivity. These anomalies vanish in temperatures higher than 30-40 K, where maxima in the magnetic susceptibility and the field-induced variation of the magnetoresistivity are found. A comparison is made between UCoGe and URhGe, where a moment reorientation in a magnetic field $mu_0mathbf{H}parallelmathbf{b}$ of 12 T leads to field-induced reentrant superconductivity.
We report a high-magnetic-field study of the itinerant ferromagnet URhSi. Magnetization and electrical resistivity were measured under magnetic fields $mu_0H$ up to 58~T applied along the directions $mathbf{a}$, $mathbf{b}$, and $mathbf{c}$ of the orthorhombic structure and temperatures $T$ ranging from 1.5 to 50 K. For $mathbf{H}parallelmathbf{b}$, pseudo-metamagnetism at $mu_0H_msimeq30-40$~T is associated with a broad step in the magnetization and a maximum in the resistivity. The properties of URhSi are discussed and compared with those of the isostructural superconducting ferromagnets URhGe and UCoGe and of the superconducting paramagnet UTe$_2$.
We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.
Single crystals of EuNiGe$_3$ crystallizing in the non-centrosymmetric BaNiSn$_3$-type structure have been grown using In flux, enabling us to explore the anisotropic magnetic properties which was not possible with previously reported polycrystalline samples. The EuNiGe$_3$ single crystalline sample is found to order antiferromagnetically at 13.2 K as revealed from the magnetic susceptibility, heat capacity and electrical resistivity data. The low temperature magnetization M(H) is distinctly different for field parallel to ${ab}$-plane and $c$-axis; the ${ab}$-plane magnetization varies nearly linearly with field before the occurrence of an induced ferromagnetic phase (spin-flip) at 6.2 Tesla; on the other hand M(H) along the $c$-axis is accompanied by two metamagnetic transitions followed by a spin-flip at 4.1 T. A model including anisotropic exchange and dipole-dipole interactions reproduces the main features of magnetization plots but falls short of full representation. (H,T) phase diagrams have been constructed for the field applied along the principal directions. From the $^{151}$Eu M{o}ssbauer spectra, we determine that the 13.2 K transition leads to an incommensurate antiferromagnetic intermediate phase followed by a transition near 10.5 K to a commensurate antiferromagnetic configuration.